Vol.4 , No. 1, Publication Date: Feb. 27, 2018, Page: 15-26
[1] | Haligondanahally Nagendrappa Prakasha, Department of Mathematics, Akshaya Institue of Technology, Tumakuru, India. |
The combined effect of magnetic field dependent (MFD) viscosity and non-uniform basic temperature profiles on the onset of thermomagnetic convection in a horizontal ferrofluid layer is studied analytically using linear stability theory, The lower and upper boundaries of the ferrofluid layer are assumed to be rigid by prescribing uniform heat flux condition at the lower boundary and a general thermal condition at the upper boundary. The Galerkin technique is used to find the eigenvalues as this technique is found to be more convenient to tackle different forms of basic temperature profiles. The results indicate that the basic cubic temperature profiles have a profound influence on the stability characteristics of the system and can be effectively used to either suppress or augment the onset of thermomagnetic convection. Results show that the conductive effect of non-steady conditions within the fluid layer does play a stabilizing state. It is observed that the effect of magnetic number, nonlinearity of the fluid magnetization is to hasten, while an increase in the magnetic field dependent viscosity parameter and Biot number is to delay the onset of ferroconvection.
Keywords
Non-Uniform-Basic-Temperature Profiles, Ferroconvection, Magnetic-Fiield-Density Viscosity, Galerkin Technique, Darcy-Rayleigh Number, General Thermal Boundaries
Reference
[01] | Neuringer, J. L.; Rosensweig, R. E.: Ferrohydrodynamics. Phy. Fluids 7 (12), 1927-1937 (1964). |
[02] | Rosensweig, R. E.: Ferrohydrodynamics. Cambridge University Press, London (1985). |
[03] | Popplewell, J.: Technological applications of ferrofluids. Phys. of Technol. 15, 150-165 (1984). |
[04] | Morimoto. Y.; Akimoto; Yotsumoto: Dispersion state of protein stabilized magnetic emulsions. Chem Pharm Bull 30 (8), 3024-3027 (1982). |
[05] | Resler, Jr. E. L.; Rosensweig, R. E.: Magnetocaloric Power. AIAA J., 2 (8), 1418-1422 (1964). |
[06] | Bashtovoy, V. G.; Berkovsky, B. M.: Convective heat transfer processes in ferromagnetic fluids. Heat Trans-Sov Res, 5, 137-142 (1973). |
[07] | Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Oxford UniversityPress, London, (1961). |
[08] | Finlayson, B. A.: Convective instability of ferromagnetic fluids. J. of Fluid Mech., 40, 753-767 (1970). |
[09] | Lalas, D. P.; Carmi. S.: Thermoconvective stability of ferrofluids. Phys. Of Fluids, 14, 436-438 (1971). |
[10] | Rudraiah, N.; Sekhar, G. N.: Convection in magnetic fluids with internal heat generation. ASME J. of Heat Trans., 113, 122-127 (1991). |
[11] | Siddheshwar, P. G.: Rayleigh-Bénard Convection in a ferromagnetic fluids with second sound. Japan Society of Magnetic Fluids, 25, 32-39 (1993). |
[12] | Shliomis, M. I.; Smorodin, B. L.: Convective instability of magnetized ferrofluids. J. of Magn. and Magn. Mater., 252, 197-202 (2002). |
[13] | Shivakumara, I. S.; Rudraiah, N.; Nanjundappa, C. E.: Effect of non-uniform basic temperature gradient on Rayleigh-Bénard-Marangoni convection in ferrofluids. J of Magn. and Magn. Mater., 248, 379-395 (2002). |
[14] | Kaloni, P. N.; Lou, J. X.: Convective instability of magnetic fluids under alternating magnetic fields. Phys. of Rev. E., 71, 066311-1-12 (2005). |
[15] | Shivakumara, I. S.; Nanjundappa, C. E.: Marangoni ferroconvection with different initial temperature gradients. J. of Energy Heat and Mass Trans., 28 (1), 45-60 (2006). |
[16] | Volker, T. E.; Blums, E.; Odenbach, S.: Heat and mass transfer phenomena in magnetic fluids. GAMM-Mitt, 30 (1), 185-194 (2007). |
[17] | Nanjundappa, C. E.; Shivakumara, I. S.: Effect of velocity and temperature boundary conditions on convective instability in a ferrofluid layer. ASME J. of Heat Transfer, 130, 104502-1-104502-5 (2008). |
[18] | Singh, J.; Bajaj, R.: Temperature modulation in ferrofluid convection. Phys. of Fluids, 21, 064105-1-064105-12 (2009). |
[19] | Nanjundappa, C. E.; Ravisha, M.; Jinho Lee; Shivakumara, I. S.: Penetrative ferroconvection in a porous layer. Acta Mech., 216, 243-257 (2011). |
[20] | Shivakumara, I. S.; Jinho Lee; Nanjundappa, C. E.: Onset of thermogravitational convection in a ferrofluid layer with temperature dependent viscosity. ASME J. of Heat Trans., 134, 012501-1-012501-7 (2012). |
[21] | Amith Mahajan; Monica Arora: Convection in rotating magnetic nanofluids. Applied Mathematics and Computation, 219 (11), 6284-6296 (2013). |
[22] | Nanjundappa, C. E.; Shivakumara, I. S.; Srikumara, K.: On the penetrative Bénard-Marangoni convection in a ferromagnetic fluid layer. Aerospace Science and Technology, 27, 57-66 (2013). |
[23] | Nield, D. A.: The onset of transient convective instability. J. of Fluid Mech., 71, 441-454 (1975). |
[24] | Venkatasubramanian, S.; Kaloni, P. N.: Effects of rotation on the thermoconvective instability of a horizontal layer of ferrofluids. Int. J. of Engg. Sci., 32 (2), 237-256 (1994). |
[25] | Prakasha, H. N.; Shivakumara, I. S.; Nanjundappa, C. E.; Ravisha, M.: Effect of vertical heterogeneity on the onset of ferroconvection in a Brinkman porous medium. Ain Shams Engineering Journal, 6, 649-655 (2015). |
[26] | Nanjundappa, C. E.; Prakash, H. N.; Shivakumara, I. S.; Jinho Lee: Effect of temperature dependent viscosity on the onset of Bénard–Marangoni ferroconvection. International Communications in Heat and Mass Transfer, 51, 25-30 (2014). |
[27] | Nanjundappa, C. E.; Prakash, H. N.; Shivakumara, I. S.: Penetrative ferroconvection via internal heating in a saturated porous layer with constant heat flux at the lower boundary. Journal of Magnetism and Magnetic Materials, 324, 1670-1678 (2012). |
[28] | Nanjundappa, C. E.; Prakash, H. N.; Shivakumara, I. S.: Effect of Coriolis force on thermomagnetic convection in a ferrofluid saturating porous medium: Aweakly non-linearstability analysis. Journal of Magnetism and Magnetic Materials, 370, 140-149 (2014). |