ISSN Print: 2381-1218  ISSN Online: 2381-1226
Computational and Applied Mathematics Journal  
Manuscript Information
 
 
High Order Resolution Applied to Chemical Non-Equilibrium Reentry Flows in 3D
Computational and Applied Mathematics Journal
Vol.1 , No. 5, Publication Date: Jul. 10, 2015, Page: 282-306
1240 Views Since July 10, 2015, 486 Downloads Since Jul. 10, 2015
 
 
Authors
 
[1]    

Edisson S. G. Maciel, Aeronautical Engineering Division (IAE), Aeronautical Technological Institute (ITA), SP, Brazil.

 
Abstract
 

In this work, the ENO procedure is presented to a conserved variable interpolation process, using either the Newton method, to second-, third-, fourth- and fifth-orders of accuracy, or the Hermite method, to third- and fifth-orders of accuracy, and the WENO procedure is also presented to generate third- and fifth-orders of accuracy in the solution of the reactive Euler and Navier-stokes equations. The numerical algorithms of Van Leer and Liou and Steffen Jr. are employed. The “hot gas” hypersonic flow around a blunt body is simulated. The results have indicated that the ENO 4th order interpolation presents better solutions.


Keywords
 

Euler and Navier-Stokes Equations, MUSCL Procedure, ENO Procedure, WENO Procedure, Van Leer Algorithm, Liou and Steffen Jr. Algorithm, Three-Dimensions


Reference
 
[01]    

G. Degrez, E. Van Der Weide, “Upwind Residual Distribution Schemes for Chemical Non-Equilibrium Flows”, AIAA Paper 99-3366, 1999.

[02]    

M. Liu, M. Vinokur, “Upwind Algorithms for General Thermo-Chemical Nonequilibrium Flows”, AIAA Paper 89-0201, 1989.

[03]    

S. K. Saxena, M. T. Nair, “An Improved Roe Scheme for Real Gas Flow”, AIAA Paper 2005-587, 2005

[04]    

P. L. Roe, “Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes, Journal of Computational Physics, Vol. 43, 1981, pp. 357-372.

[05]    

J. J. Van Der Vegt, “ENO-Osher Schemes for Euler Equations”, AIAA Paper 93-0335, 1993.

[06]    

J. Goodman, and R. LeVeque, “On the Accuracy of Stable Schemes for 2D Scalar Conservation Laws”, Mathematics of Computation, Vol. 45, 1985, pp. 15-21.

[07]    

S. Osher, and S. R. Chakravarthy, “High Resolution Schemes and the Entropy Condition”, SIAM Journal on Numerical Analysis, Vol. 21, 1984, pp. 955-984.

[08]    

C. Hirsch, “Numerical Computation of Internal and External Flows Computational Methods for Inviscid and Viscous Flows”, John Wiley & Sons Ltd, 691p., 1990.

[09]    

A. Harten, S. Osher, B. Engquist, S. R. Chakravarthy, “Some Results on Uniformly High Order Accurate Essentially Non-Oscillatory Schemes”, Journal of Applied Numerical Mathematics, Vol. 2, 1986, pp. 347-377.

[10]    

A. Harten, and S. Osher, “Uniformly High-Order Accurate Nonoscillatory Schemes I”, SIAM Journal on Numerical Analysis, Vol. 24, 1987, pp. 279-309.

[11]    

A. Harten, B. Engquist, S. Osher, S. R. Chakravarthy, “Uniformly High Order Accurate Essentially Non-Oscillatory Schemes III”, Journal of Computational Physics, Vol. 71, 1987, pp. 231-303.

[12]    

A. Harten, and S. R. Chakravarthy, “Multi-Dimensional ENO Schemes for General Geometries”, ICASE Report 91-76, NASA Langley, Virginia, 1991.

[13]    

C. –W. Shu, and S. Osher, “Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes”, Journal of Computational Physics, Vol. 77, 1988, pp. 439-471.

[14]    

C. –W. Shu, and S. Osher, “Efficient Implementation of Essentially Non-Oscillatory Shock Capturing Schemes, II”, Journal of Computational Physics, Vol. 83, 1989, pp. 32-78.

[15]    

Atkinson, K. E., “An Introduction to Numerical Analysis”, John Wiley & Sons, 2nd Edition, 693p., 1989.

[16]    

Faires, J. D., and Burden, R., “Numerical Methods”, Thomsom Books/Cole, 3rd Edition, 622p., 2003.

[17]    

X. –D. Liu, S. Osher, and T. Chan, “Weighted Essentially Non-oscillatory Schemes”, Journal of Computational Physics, Vol. 115, 1994, pp. 200-212.

[18]    

C. –W. Shu, “Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws”, ICASE Report No. 97-65, 1997.

[19]    

B. Van Leer, “Flux-Vector Splitting for the Euler Equations”, Lecture Notes in Physics, Springer Verlag, Berlin, Vol. 170, 1982, pp. 507-512.

[20]    

M. Liou, and C. J. Steffen Jr., “A New Flux Splitting Scheme”, Journal of Computational Physics, Vol. 107, 1993, pp. 23-39.

[21]    

E. S. G. Maciel, “Simulations in 2D and 3D Applying Unstructured Algorithms”, Saarbrücken, Deutschland: Lambert Academic Publishing, 2015, Ch. 1, pp. 26-47.

[22]    

E. S. G. Maciel, “Simulations in 2D and 3D Applying Unstructured Algorithms”, Saarbrücken, Deutschland: Lambert Academic Publishing, 2015, Ch. 6, pp. 160-181.

[23]    

E. S. G. Maciel, A. P. Pimenta, “Reentry Flows in Chemical Non-Equilibrium in Two-Dimensions”, Proceedings of the 10th International Symposium on Combustion and Energy Utilisation (ICCEU 2010), Mugla, Turkey, 2010.

[24]    

E. S. G. Maciel, and A. P. Pimenta, “Chemical Non-Equilibrium Reentry Flows in Two-Dimensions – Part I”, WSEAS Transactions on Fluid Mechanics, Vol. 8, Issue 1, 2013, pp. 1-20.

[25]    

E. S. G. Maciel, and A. P. Pimenta, “Chemical Non-Equilibrium Reentry Flows in Two-Dimensions – Part II”, WSEAS Transactions on Fluid Mechanics, Vol. 8, Issue 2, 2013, pp. 50-79.

[26]    

B. Van Leer, “Towards the Ultimate Conservative Difference Scheme. II. Monotonicity and Conservation Combined in a Second-Order Scheme”, Journal of Computational Physics, Vol. 14, 1974, pp. 361-370.

[27]    

P. L. Roe, In Proceedings of the AMS-SIAM “Summer Seminar on Large-Scale Computation in Fluid Mechanics”, Edited by B. E. Engquist et al, Lectures in Applied Mathematics, Vol. 22, 1983, p. 163.

[28]    

E. S. G. Maciel, and A. P. Pimenta, “Reentry Flows in Chemical Non-Equilibrium in Three-Dimensions”, WSEAS Transactions on Mathematics, Vol. 11, Issue 3, 2012, pp. 227-256.

[29]    

D. Ait-Ali-Yahia, and W. G. Habashi, “Finite Element Adaptive Method for Hypersonic Thermochemical Nonequilibrium Flows”, AIAA Journal Vol. 35, No. 8, 1997, 1294-1302.

[30]    

R. Radespiel, and N. Kroll, “Accurate Flux Vector Splitting for Shocks and Shear Layers”, Journal of Computational Physics, Vol. 121, 1995, pp. 66-78.

[31]    

L. N. Long, M. M. S. Khan, and H. T. Sharp, “Massively Parallel Three-Dimensional Euler / Navier-Stokes Method”, AIAA Journal, Vol. 29, No. 5, 1991, pp. 657-666.

[32]    

R. W. Fox, and A. T. McDonald, “Introdução à Mecânica dos Fluidos”, Guanabara Editor, 1988.

[33]    

E. S. G. Maciel, “Comparison Between Newton and Hermite ENO Interpolations as Applied to Reentry Flows in 2D”, Submitted to Computational and Applied Mathematics (under review), 2015.

[34]    

J. D. Anderson Jr., “Fundamentals of Aerodynamics”, McGraw-Hill, Inc., 5th Edition, 1008p., 2010.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership