ISSN Print: 2381-1218  ISSN Online: 2381-1226
Computational and Applied Mathematics Journal  
Manuscript Information
 
 
Comparison Among MUSCL, ENO and WENO Procedures as Applied to Reentry Flows in 2D
Computational and Applied Mathematics Journal
Vol.1 , No. 5, Publication Date: Jul. 13, 2015, Page: 355-377
1249 Views Since July 13, 2015, 1763 Downloads Since Jul. 13, 2015
 
 
Authors
 
[1]    

Edisson S. G. Maciel, Aeronautical Engineering Division (IEA), Aeronautical Technological Institute (ITA), SP, Brasil.

 
Abstract
 

In this work, a comparison among the second-order MUSCL procedure, the second-, third-, fourth- and fifth-order ENO procedure, and the third- and fifth-order WENO procedure is presented. The Euler and Navier-Stokes equations, on a finite volume and structured contexts, are studied. The numerical algorithm of Van Leer is used to perform the reentry flow numerical experiments. The “hot gas” hypersonic flow around a blunt body, in two-dimensions, is simulated. The results have indicated that the 4th and 5th order variants of the ENO procedure and the 3rd order variant of the WENO procedure have yielded the best solutions.


Keywords
 

MUSCL Procedure, ENO Procedure, WENO Procedure, Reentry Flows, Euler and Navier-Stokes Equations, Newton Interpolation Process, Finite Volume


Reference
 
[01]    

J. J. Van Der Vegt, “ENO-Osher Schemes for Euler Equations”, AIAA Paper 93-0335, 1993.

[02]    

J. Goodman, and R. LeVeque, “On the Accuracy of Stable Schemes for 2D Scalar Conservation Laws”, Mathematics of Computation, Vol. 45, 1985, pp. 15-21.

[03]    

S. Osher, and S. R. Chakravarthy, “High Resolution Schemes and the Entropy Condition”, SIAM Journal on Numerical Analysis, Vol. 21, 1984, pp. 955-984.

[04]    

C. Hirsch, “Numerical Computation of Internal and External Flows Computational Methods for Inviscid and Viscous Flows”, John Wiley & Sons Ltd, 691p., 1990.

[05]    

A. Harten, S. Osher, B. Engquist, S. R. Chakravarthy, “Some Results on Uniformly High Order Accurate Essentially Non-Oscillatory Schemes”, Journal of Applied Numerical Mathematics, Vol. 2, 1986, pp. 347-377.

[06]    

A. Harten, and S. Osher, “Uniformly High-Order Accurate Nonoscillatory Schemes I”, SIAM Journal on Numerical Analysis, Vol. 24, 1987, pp. 279-309.

[07]    

A. Harten, B. Engquist, S. Osher, S. R. Chakravarthy, “Uniformly High Order Accurate Essentially Non-Oscillatory Schemes III”, Journal of Computational Physics, Vol. 71, 1987, pp. 231-303.

[08]    

A. Harten, and S. R. Chakravarthy, “Multi-Dimensional ENO Schemes for General Geometries”, ICASE Report 91-76, NASA Langley, Virginia, 1991.

[09]    

C. –W. Shu, and S. Osher, “Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes”, Journal of Computational Physics, Vol. 77, 1988, pp. 439-471.

[10]    

C. –W. Shu, and S. Osher, “Efficient Implementation of Essentially Non-Oscillatory Shock Capturing Schemes, II”, Journal of Computational Physics, Vol. 83, 1989, pp. 32-78.

[11]    

B. Van Leer, “Flux-Vector Splitting for the Euler Equations”, Lecture Notes in Physics, Springer Verlag, Berlin, Vol. 170, 1982, pp. 507-512.

[12]    

E. S. G. Maciel, Simulations in 2D and 3D Applying Unstructured Algorithms, Euler and Navier-Stokes Equations – Perfect Gas Formulation. Saarbrücken, Deutschland: Lambert Academic Publishing (LAP), 2015, Ch. 1, pp. 26-47.

[13]    

E. S. G. Maciel, Simulations in 2D and 3D Applying Unstructured Algorithms, Euler and Navier-Stokes Equations – Perfect Gas Formulation. Saarbrücken, Deutschland: Lambert Academic Publishing (LAP), 2015, Ch. 6, pp. 160-181.

[14]    

S. K. Saxena and M. T. Nair, “An Improved Roe Scheme for Real Gas Flow”, AIAA Paper 2005-587, 2005.

[15]    

F. G. Blottner, “Viscous Shock Layer at the Stagnation Point With Nonequilibrium Air Chemistry”, AIAA Journal, Vol. 7, No. 12, 1969, pp. 2281-2288.

[16]    

E. S. G. Maciel, and A. P. Pimenta, “Thermochemical Non-Equilibrium Reentry Flows in Two-Dimensions – Part I”, WSEAS Transactions on Mathematics, Vol. 11, Issue 6, 2012, pp. 520-545.

[17]    

E. S. G. Maciel, and A. P. Pimenta, “Thermochemical Non-Equilibrium Reentry Flows in Two-Dimensions – Part II”, WSEAS Transactions on Mathematics, Vol. 11, Issue 11, 2012, pp. 977-1005.

[18]    

E. S. G. Maciel, and A. P. Pimenta, “Thermochemical Non-Equilibrium Reentry Flows in Two-Dimensions: Seven Species Model – Part I”, WSEAS Transactions on Applied and Theoretical Mechanics, Vol. 7, Issue 4, 2012, pp. 311-337.

[19]    

E. S. G. Maciel, and A. P. Pimenta, “Thermochemical Non-Equilibrium Reentry Flows in Two-Dimensions: Seven Species Model – Part II”, WSEAS Transactions on Applied and Theoretical Mechanics, Vol. 8, Issue 1, 2013, pp. 55-83.

[20]    

E. S. G. Maciel, and A. P. Pimenta, “Chemical Non-Equilibrium Reentry Flows in Two-Dimensions – Part I”, WSEAS Transactions on Fluid Mechanics, Vol. 8, Issue 1, 2013, pp. 1-20.

[21]    

E. S. G. Maciel, and A. P. Pimenta, “Chemical Non-Equilibrium Reentry Flows in Two-Dimensions – Part II”, WSEAS Transactions on Fluid Mechanics, Vol. 8, Issue 2, 2013, pp. 50-79.

[22]    

R. K. Prabhu, “An Implementation of a Chemical and Thermal Nonequilibrium Flow Solver on Unstructured Meshes and Application to Blunt Bodies”, NASA CR-194967, 1994.

[23]    

D. Ait-Ali-Yahia, and W. G. Habashi, “Finite Element Adaptive Method for Hypersonic Thermochemical Nonequilibrium Flows”, AIAA Journal Vol. 35, No. 8, 1997, 1294-1302.

[24]    

R. Radespiel, and N. Kroll, “Accurate Flux Vector Splitting for Shocks and Shear Layers”, Journal of Computational Physics, Vol. 121, 1995, pp. 66-78.

[25]    

L. N. Long, M. M. S. Khan, and H. T. Sharp, “Massively Parallel Three-Dimensional Euler / Navier-Stokes Method”, AIAA Journal, Vol. 29, No. 5, 1991, pp. 657-666.

[26]    

B. Van Leer, “Towards the Ultimate Conservative Difference Scheme. II. Monotonicity and Conservation Combined in a Second-Order Scheme”, Journal of Computational Physics, Vol. 14, 1974, pp. 361-370.

[27]    

P. L. Roe, In Proceedings of the AMS-SIAM “Summer Seminar on Large-Scale Computation in Fluid Mechanics”, Edited by B. E. Engquist et al, Lectures in Applied Mathematics, Vol. 22, 1983, p. 163.

[28]    

E. S. G., Maciel, “Relatório ao CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) sobre as atividades de pesquisa realizadas no período de 01/07/2009 até 31/12/2009 com relação ao projeto PDJ número 150143/2008-7”, Report to the National Council of Scientific and Technological Development (CNPq), São José dos Campos, SP, Brasil, 102p, 2009. [available in the website www.edissonsavio.eng.br]

[29]    

R. W. Fox, and A. T. McDonald, “Introdução à Mecânica dos Fluidos”, Guanabara Editor, 1988.

[30]    

J. D. Anderson Jr., “Fundamentals of Aerodynamics”, McGraw-Hill, Inc., 5th Edition, 1008p., 2010.

[31]    

G. –S. Jiang, and C. –W. Shu, “Efficient Implementation of Weighted ENO Schemes”, Journal of Computational Physics, Vol. 126, 1996, pp. 202-228.

[32]    

X. –D. Liu, S. Osher, and T. Chan, “Weighted Essentially Non-oscillatory Schemes”, Journal of Computational Physics, Vol. 115, 1994, pp. 200-212.

[33]    

C. –W. Shu, “Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws”, ICASE Report No. 97-65, 1997.

[34]    

H. W. Liepmann, and A. Roshko, “Elements of Gasdynamics”, John Wiley & Sons, Inc., 1st Edition, 439p, 1957.

[35]    

C. B. Laney, “Computational Gasdynamics”, Cambridge University Press, 1st Edition, 613p., 1998.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership