ISSN Print: 2381-1218  ISSN Online: 2381-1226
Computational and Applied Mathematics Journal  
Manuscript Information
 
 
Assessment of Several Turbulence Models Applied to Supersonic Flows in Three-Dimensions – Part I
Computational and Applied Mathematics Journal
Vol.1 , No. 4, Publication Date: Jun. 12, 2015, Page: 156-173
1182 Views Since June 12, 2015, 1022 Downloads Since Jun. 12, 2015
 
 
Authors
 
[1]    

Edisson S. G. Maciel, Aeronautical Engineering Division, ITA (Aeronautical Technological Institute), SP, Brazil.

 
Abstract
 

In the present work, the Van Leer and the Liou and Steffen Jr. flux vector splitting schemes are applied to the three-dimensional Favre-averaged Navier-Stokes equations. The Cebeci and Smith and Baldwin and Lomax algebraic models and the Jones and Launder and Wilcox and Rubesin two-equation models are used in order to close the problem. The physical problem under study is the supersonic flow around a blunt body. The results have demonstrated that the Van Leer scheme using the Wilcox and Rubesin turbulence model has yielded the best value of the stagnation pressure at the blunt body’s nose.


Keywords
 

Cebeci and Smith Turbulence Model, Jones and Launder Turbulence Model, Baldwin and Lomax Turbulence Model, Wilcox and Rubesin Turbulence Model, Navier-Stokes Equations, Three-Dimensions


Reference
 
[01]    

P. Kutler, “Computation of Three-Dimensional, Inviscid Supersonic Flows”, Lecture Notes in Physics, Vol. 41, 1975, pp. 287-374.

[02]    

B. Van Leer, “Flux-Vector Splitting for the Euler Equations”, Proceedings of the 8th International Conference on Numerical Methods in Fluid Dynamics, E. Krause, Editor, Lecture Notes in Physics, Vol. 170, 1982, pp. 507-512, Springer-Verlag, Berlin.

[03]    

M. Liou, and C. J. Steffen Jr., “A New Flux Splitting Scheme”, Journal of Computational Physics, Vol. 107, 1993, pp. 23-39.

[04]    

P. L. Roe, “Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes”, Journal of Computational Physics, Vol. 43, 1981, 357-372.

[05]    

E. S. G. Maciel, and N. G. C. R. Fico Jr., “Estudos de Escoamentos Turbulentos Utilizando o Modelo de Baldwin e Lomax e Comparação entre Algoritmos Explícitos e Implícitos”, Proceedings of the III National Congress of Mechanical Engineering (III CONEM), Belém, PA, Brazil, 2004. [CD-ROM]

[06]    

B. S. Baldwin, and H. Lomax, “Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows”, AIAA Paper 78-257, 1978.

[07]    

R. W. MacCormack, “The Effect of Viscosity in Hypervelocity Impact Cratering”, AIAA Paper 69-354, 1969.

[08]    

T. H. Pulliam, and D. S. Chaussee, “A Diagonal Form of an Implicit Approximate-Factorization Algorithm”, Journal of Computational Physics, Vol. 39, 1981, pp. 347-363.

[09]    

A. Jameson, W. Schmidt, and E. Turkel, “Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time Stepping Schemes”, AIAA Paper 81-1259, 1981.

[10]    

E. S. G. Maciel, and N. G. C. R. Fico Jr., “High Resolution Algorithms Coupled with Three Turbulence Models Applied to an Aerospace Flow Problem – Part I”, AIAA Paper 06-0292, 2006. [CD-ROM]

[11]    

T. Cebeci, and A. M. O. Smith, “A Finite-Difference Method for Calculating Compressible Laminar and Turbulent Boundary Layers”, Journal of Basic Engineering, Trans. ASME, Series B, Vol. 92, No. 3, 1970, pp. 523-535.

[12]    

P. R. Sparlat, and S. R. Allmaras, “A One-Equation Turbulence Model for Aerodynamic Flows”, AIAA Paper 92-0439, 1992.

[13]    

A. Harten, “High Resolution Schemes for Hyperbolic Conservation Laws”, Journal of Computational Physics, Vol. 49, 1983, pp. 357-393.

[14]    

R. Radespiel, and N. Kroll, “Accurate Flux Vector Splitting for Shocks and Shear Layers”, Journal of Computational Physics, Vol. 121, 1995, pp. 66-78.

[15]    

E. S. G. Maciel, and N. G. C. R. Fico Jr., “Comparação Entre Modelos de Turbulência de Duas Equações Aplicados a um Problema Aeroespacial”, Proceedings of the Primer Congreso Argentino de Ingeniería Mecánica (I CAIM), Bahía Blanca, Argentina, 2008. [CD-ROM]

[16]    

F. Jacon, and D. Knight, “A Navier-Stokes Algorithm for Turbulent Flows Using an Unstructured Grid and Flux Difference Splitting”, AIAA Paper 94-2292, 1994.

[17]    

Y. Kergaravat, and D. Knight, “A Fully Implicit Navier-Stokes Algorithm for Unstructured Grids Incorporating a Two-Equation Turbulence Model”, AIAA Paper 96-0414, 1996.

[18]    

W. P. Jones, and B. E. Launder, “The Prediction of Laminarization with a Two-Equation Model of Turbulence”, International Journal of Heat and Mass Transfer, Vol. 15, 1972, pp. 301-304.

[19]    

D. C. Wilcox, and M. W. Rubesin, “Progress in Turbulence Modeling for Complex Flow Fields Including the Effects of Compressibility”, NASA TP-1517, 1980.

[20]    

E. S. G. Maciel, Simulations in 2D and 3D Applying Unstructured Algorithms, Euler and Navier-Stokes Equations – Perfect Gas Formulation. Saarbrücken, Deutschland: Lambert Academic Publishing (LAP), 2015, Ch. 1, pp. 26-47.

[21]    

E. S. G. Maciel, Simulations in 2D and 3D Applying Unstructured Algorithms, Euler and Navier-Stokes Equations – Perfect Gas Formulation. Saarbrücken, Deutschland: Lambert Academic Publishing (LAP), 2015, Ch. 6, pp. 160-181.

[22]    

R. W. Fox, and A. T. McDonald, Introdução à Mecânica dos Fluidos. Ed. Guanabara Koogan, Rio de Janeiro, RJ, Brazil, 632 p, 1988.

[23]    

E. S. G. Maciel, Applications of TVD Algorithms in 2D and 3D, Euler and Navier-Stokes Equations in 2D and 3D. Saarbrücken, Deutschland: Lambert Academic Publishing (LAP), 2015, Ch. 13, pp. 463-466.

[24]    

L. N. Long, M. M. S. Khan, and H. T. Sharp, “Massively Parallel Three-Dimensional Euler/Navier-Stokes Method”, AIAA Journal, Vol. 29, No. 5, 1991, pp. 657-666.

[25]    

D. J. Mavriplis, and A. Jameson, “Multigrid Solution of the Navier-Stokes Equations on Triangular Meshes”, AIAA Journal, Vol. 28, No. 8, 1990, pp. 1415-1425.

[26]    

E. S. G. Maciel, “Comparação entre os Modelos de Turbulência de Cebeci e Smith e de Baldwin e Lomax”, Proceedings of the 5th Spring School of Transition and Turbulence (V EPTT), Rio de Janeiro, RJ, Brazil, 2006. [CD-ROM]

[27]    

E. S. G. Maciel, “Estudo de Escoamentos Turbulentos Utilizando os Modelos de Cebeci e Smith e de Baldwin e Lomax e Comparação entre os Algoritmos de MacCormack e de Jameson e Mavriplis”, Proceedings of the 7th Symposium of Computational Mechanics (VII SIMMEC), Araxá, MG, Brazil, 2006. [CD-ROM]

[28]    

A. Jameson, and D. Mavriplis, “Finite Volume Solution of the Two-Dimensional Euler Equationson a Regular Triangular Mesh”, AIAA Journal, vol. 24, no. 4, pp. 611-618, 1986.

[29]    

E. S. G. Maciel, “Simulação Numérica de Escoamentos Supersônicos e Hipersônicos Utilizando Técnicas de Dinâmica dos Fluidos Computacional”, Doctoral Thesis, ITA, CTA, São José dos Campos, SP, Brazil, 2002.

[30]    

J. D. Anderson Jr., Fundamentals of Aerodynamics. McGraw-Hill, Inc., EUA, 4th Edition, 1008p, 2005.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership