Vol.5 , No. 3, Publication Date: Nov. 5, 2018, Page: 50-60
[1] | Mohammed Abdullah Al-Omair, Department of Chemistry, Faculty of Science, King Faisal University (KFU), Hofuf, Saudi Arabia. |
Lipases are one of the most valuable classes of enzymes of high economic importance. Bacterial lipases vary widely in enzymatic properties and substrate specificities. Consequently, they are currently receiving much attention because of their potential applications in various industrial processes and biotechnological applications as in fat, food ingredients, detergents, surfactants, textile industries and oil processing. Microbial lipases have wide application in the processing of leather, domestic, industrial wastes and pharmaceutical industries. The need for thermostable lipase enzymes is steadily rising and the isolation of lipases from thermostable microorganisms is highly requisite. In a screening program for isolation of thermophilic lipase-producing bacteria, a number of thermophilic bacteria were isolated from Al- Hassa region, Saudi Arabia. Among 93 isolates, potent bacterial candidates were identified based on biochemical characteristics, RAPD-PCR, and 16S rRNA gene sequencing. Phylogenetic analysis revealed their closeness to the thermophilic Burkholderia pseudomalllei (B. pseudomalllei) and Staphylococcus pasteuri (S. pasteuri) with optimal growth at 50°C for both strains and pH 8.0 and 7.5, respectively. An inducible nature of lipolytic enzyme synthesis using oils was demonstrated. Salt stress studies revealed that S. pasteuri and B. pseudomalllei have the ability to tolerate NaCl salt up to 2% and 2.5%, respectively. Both S. pasteuri and B. pseudomalllei are the highest thermophilic bacteria generating lipase.
Keywords
Thermophilic, Lipase, Rapid PCR, 16S rRNA, Burkholderia pseudomalllei, Staphylococcus pasteuri
Reference
[01] | Sharma R, Thakur V, Sharma M, Birkeland N-K. (2013). “Biocatalysis through thermostable lipases: adding flavor to chemistry,” in Thermophilic Microbes in Environmental and Industrial Biotechnology, pp. 905–927, Springer, New York, NY, USA. |
[02] | Benjamin, S. and Pandey, A. (1998). Candida rugosa lipases: Molecular biology and Versatility in Biotechnology. Yeast. 14: 1069-1087. |
[03] | Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13: 390–397. |
[04] | Jaeger K-E and Reetz MT. (1998). Microbial lipases form versatile tools for biotechnology. Trends Biotechnol. 16: 396–403. |
[05] | Hasan F, Shah AA, Javed S, Hameed A (2010) Enzymes used in detergents: lipases. Afr J Biotechnol 9 (31): 4836–4844. |
[06] | Sharma D, Sharma B, Shukla AK (2011) Biotechnological approach of microbial lipase: a review. Biotechnology 10 (1): 23–40 |
[07] | Tirawongsaroj, P., R. Sriprang, P. Harnpicharnchai, T. Thongaram, V. Champreda, S. Tanapongpipat, K. Pootanakit and L. Eurwilaichitr. (2008). Novel thermophilic and thermostable lipolytic enzymes from a Thailand hot spring metagenomic library. J. Biotechnol. 133: 42–49. |
[08] | Javed S, Azeem F, Hussain S, Rasul I, Siddique MH, Riaz M, Afzal M, Kouser A, Nadeem H. Bacterial lipases: A review on purification and characterization. Prog Biophys Mol Biol. (2017). Aug 1. pii: S0079-6107 (17) 30080-9. |
[09] | Vorapreeda T, Thammarongtham C, Laoteng K (2016) Integrative computational approach for genome-based study of microbial lipid-degrading enzymes. World J Microbiol Biotechnol 32 (7): 122. doi: 10.1007/s11274-016-2067-7. Epub 2016 Jun 4. Review. |
[10] | Akanbi, T. O., Kamaruzaman, A. L., Abu Bakar, F., Sheikh Abdul Hamid, N., Radu, S., Abdul Manap, M. Y. and Saari, N. (2010). Highly thermostable extracellular lipase-producing Bacillus strain isolated from a Malaysian hotspring and identified using 16S rRNA gene sequencing. Internat. Food Res. J 17: 45-53. |
[11] | Bornscheuer, U. T. (2002) Microbial carboxyl esterases: classification properties and application in biocatalysis. FEMES Microbiol. Rew. 26: 73-81. |
[12] | Castilla, A., Panizza, P., Rodríguez, D., Bonino, L., Díaz, P., Irazoqui, G., Rodríguez, S., 2017. A novel thermophilic and halophilic esterase from Janibacter sp. R02, the first member of a new lipase family (Family XVII). Enzyme Microb. Technol. 98, 86–95. |
[13] | Masomian, M., Rahman, R. N. Z. R. A., Salleh, A. B., Basri, M., 2016. Analysis of comparative sequence and genomic data to verify phylogenetic relationship and explore a new subfamily of bacterial lipases. PLoS One 11, e0149851. |
[14] | Gugliandolo C, Lentini V, Spanò A, Maugeri TL (2012) New bacilli from shallow hydrothermal vents of Panarea Island (Italy) and their biotechnological potential. J Appl Microbiol 112 (6): 1102-1112. |
[15] | Lemos LN, Pereira RV, Quaggio RB, Martins LF, Moura LMS, da Silva AR, Antunes LP, da Silva AM and Setubal JC (2017) Genome-Centric Analysis of a Thermophilic and Cellulolytic Bacterial Consortium Derived from Composting. Front Microbiol 8: 644. |
[16] | Maugeri, T. L., Gugliandolo, C., Caccamo, D. and Stackebrandt, E. (2001). A polyphasic taxonomic study of thermophilic bacilli from shallow, marine vents, Syst. Appl. Microbiol. 24: 572–587. |
[17] | Priya I, Dhar MK, Bajaj BK, Koul S, and Vakhlu J (2016) Cellulolytic Activity of Thermophilic Bacilli Isolated from Tattapani Hot Spring Sediment in North West Himalayas. Indian J Microbiol 56 (2): 228–231. |
[18] | Adiguzel A, Ozkan H, Baris O, Inan K, Gulluce M, Sahin F (2009) Identification and characterization of thermophilic bacteria isolated from hot spring in Turkey. Journal of microbiological methods 79: 321–328 |
[19] | Charbonneau DM, Meddeb-Mouelhi F, Boissinot M, Sirois M, Beauregard M (2012). Identification of thermophilic bacterial strains producing thermotolerant hydrolytic enzymes from manure compost. Indian J Microbiol. 52 (1): 41-7. |
[20] | Sahay H, Yadav AN, Singh AK, Singh S, Kaushik R, Saxena AK (2017) Hot springs of Indian Himalayas: potential sources of microbial diversity and thermostable hydrolytic enzymes. 3 Biotech. 7 (2): 118. |
[21] | Shahinyan G, Margaryan A, Panosyan H, Trchounian A (2017) Identification and sequence analyses of novel lipase encoding novel thermophillic bacilli isolated from Armenian geothermal springs. BMC Microbiol. 17 (1): 103. |
[22] | Zaliha, R. N., Rahman, R. A., Leow, T. C., Salleh A. B. and Basri, M. (2007). Geobacillus zalihae sp. nov., a thermophilic lipolytic bacterium isolated from palm oil mill effluent in Malaysia, BMC Microbiol. 7: P. 77. |
[23] | Abol-Fotouh, D. M., Bayoumi, R. A., Hassan, M. A., (2016). Production of thermoalkaliphilic lipase from Geobacillus thermoleovorans DA2 and application in leather industry. Enzyme Res 2016. |
[24] | Aunstrup, K. (1990). Novo Nordisk foresees bright future for genetically engineered industrial enzymes. Eur. Biotechnol. Lett. 94: 3. |
[25] | Cherif, S., Mnif, S., Hadrich, F., Abdelkafi, S., Sayadi, S., 2011. A newly high alkaline lipase: an ideal choice for application in detergent formulations. Lipids Health 517 Dis. 10, 221. |
[26] | Sarac, N., Ugur, A., Boran, R., Elgin, E. S., 2015. The Use of boron compounds for stabilization of lipase from Pseudomonas aeruginosa ES3 for the detergent industry. J. Surfac. Deterg. 18, 275–285. |
[27] | Saun, N. K., Narwal, S. K., Dogra, P., Chauhan, G. S., Gupta, R., 2014. Comparative study of free and immobilized lipase from Bacillus aerius and its application in synthesis of ethyl ferulate. JOS. 63, 911–919. |
[28] | Tripathi, R., Singh, J., Bharti, R. K., Thakur, I. S., 2014. Isolation, purification and characterization of lipase from Microbacterium sp. and its application in biodiesel production. Energy Procedia 54, 518–529. |
[29] | Asoodeh A, Emtenani S, Emtenani S (2014) Expression and biochemical characterization of a thermophilic organic solvent-tolerant lipase from Bacillus sp. DR90. Protein J 33 (5): 410-21. |
[30] | De Simone, G., V. Menchise, G. Manco, L. Mandrich, N. Sorrentino, D. Lang, M. Rossi, and C. Pedone. (2001). The crystal structure of a hyper-thermophilic carboxylesterase from the archaeon Archaeoglobus fulgidus. J. Mol. Biol. 314: 507-518. |
[31] | Esakkiraj P, Antonyraj CB, Meleppat B, Ankaiah D, Ayyanna R, Ahamed SIB, Arul V. (2017). Molecular characterization and application of lipase from Bacillus sp. PU1 and investigation of structural changes based on pH and temperature using MD simulation. Int J Biol Macromol 103: 47-56. doi: 10.1016/j.ijbiomac.2017.04.111. |
[32] | Gricajeva A, Bendikienė V, Kalėdienė L (2016) Lipase of Bacillus stratosphericus L1: Cloning, expression and characterization. Int J Biol Macromol 92: 96-104. doi: 10.1016/j.ijbiomac.2016.07.015. Epub 2016 Jul 5. |
[33] | Madan, B. and Mishra, P. (2009). Overexpression, Purification and Characterization of Organic Solvent Stable Lipase from Bacillus licheniformis RSP-09. J Mol Microbiol Biotechnol: 17 (3): 118-123. |
[34] | Tayyab M, Rashid N, Akhtar M (2011) Isolation and identification of lipase producing thermophilic Geobacillus sp. SBS-4S: cloning and characterization of the lipase. J Biosci Bioeng 111 (3): 272-8. |
[35] | Rahman, T., Marchant, R. and Banat, I. M. (2004). Distribution and molecular investigation of highly thermophilic bacteria associated with cool soil environments. Biochem. Soc. Trans. 32: 209–213. |
[36] | Cihan AC (2013) Taxonomic cassification of Anoxybacillus iolates from geothermal regions in Turkey by 16S rRNA gene sequences and ARDRA, ITS-PCR, Rep-PCR Analyses. Polish Journal of Microbiology 62 (2) 149–163. |
[37] | Derekova, A., Sjøholm, C., Mandeva, R and Kambourova, M. (2007), Anoxybacillus rupiensis sp. nov., a novel thermophilic bacterium isolated from Rupi basin (Bulgaria), Extremophiles 11. 577–583. |
[38] | Soo RM, Wood SA, Grzymski JJ, McDonald IR, Cary SC. (2009). Microbial biodiversity of thermophilic communities in hot mineral soils of Tramway Ridge, Mount Erebus, Antarctica. Environ Microbiol 11 (3): 715-28. |
[39] | Thebti W, Riahi Y, Gharsalli R, Belhadj O. (2016). Screening and characterization of thermo-active enzymes of biotechnological interest produced by thermophilic Bacillus isolated from hot springs in Tunisia. Acta Biochim Pol 63 (3): 581-7. |
[40] | Atomi H, Sato T, Kanai T (2011) Application of hyperthermophiles and their enzymes. Curr Opin Biotechnol 22 (5): 618-26. doi: 10.1016/j.copbio.2011.06.010. |
[41] | de Miguel Bouzas T, Barros-Velázquez J, Villa TG. (2006). Industrial applications of hyperthermophilic enzymes: a review. Protein Pept Lett 13 (7): 645-51. |
[42] | Coolbear, T., R. M. Daniel, and H. W. Morgan. (1992). The enzymes from extreme thermophiles: bacterial sources, thermostabilities and industrial relevance. Adv. Biochem. Eng. Biotechnol. 45: 57-98. |
[43] | López-López O, Cerdán ME, González Siso MI (2014) New extremophilic lipases and esterases from metagenomics. Curr Protein Pept Sci 15 (5): 445-55. |
[44] | Nigam SP. 2013. Microbial enzymes with special characteristics for biotechnological applications. Biomolecules 3: 597-611. |
[45] | Anobom CD, Pinheiro AS, De-Andrade RA, Aguieiras EC, Andrade GC, Moura MV, Almeida RV, Freire DM (2014) From structure to catalysis: recent developments in the biotechnological applications of lipases. Biomed Res Int 2014: 684506. |
[46] | Joseph B, Ramteke PW, Thomas G, Shrivastava N (2007) Standard review cold-active microbial lipases: a versatile tool for industrial applications. Biotechnol. Mol. Biol. Rev 2 (2): 39–48. |
[47] | Ribeiro BD, de Castro AM, Coelho MA, Freire DM. (2011). Enzyme Res 2011: 615803. doi: 10.4061/2011/615803. Epub 2011 Jul 7. |
[48] | Dharmusthii, S. and S. Luchai, (1999). Production, purification and characterization of thermophilic lipase from Bacillus sp. THL0127. FEMS Microbiol. Lett., 179: 241-246. |
[49] | Kambovrova, M., N. Kirilova, R. Mandeva and A. Derekova, (2003). Properties of thermostable lipase from a thermophilic Bacillus stearothermophilus MC7. J. of Molecular Catalysis B. Enzymatic, 22: 307-313. |
[50] | Kim H-K, Sung M-H, Kim H-M, Tae-Kwang O (2014) Occurrence of Thermostable Lipase in Thermophilic Bacillus sp. Strain 398. Biosci Biotechnol Biochem 58: 961–962. doi: 10.1271/bbb.58.961. |
[51] | Olusesan A., Azura L. K., Abubakar F., Hamid N. S., Radu S., Saari N. (2009). Phenotypic and molecular identification of a novel thermophilic Anoxybacillus species: a lipase-producing bacterium isolated from a Malaysian hotspring. World J Microbiol Biotechnol. 25 11: 1981-1988. |
[52] | Yamada C, Sawano K, Iwase N, Matsuoka M, Arakawa T, Nishida S, Fushinobu S (2017) Isolation and characterization of a thermostable lipase from Bacillus thermoamylovorans NB501. J Gen Appl Microbiol 25; 62 (6): 313-319. |
[53] | Haki, G. D., and S. K. Rakshit. (2003). Developments in industrially important thermostable enzymes: a review. Bioresour. Technol. 89: 17-34. |
[54] | Youssef, Magdy M. (2015). Overexpression, Purification, Immobilization and Characterization of Thermophilic Lipase from Burkholderia pseudomallei. American Journal of Microbiology and Biotechnology.2 (6): 82-91. |
[55] | Sambrook, J., E. F. Fritsch and T. Maniatis. (1989). Molecular Cloning; A Laboratory Manual, second ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA. |
[56] | Hou, C. T. and Johnston, T. M. (1992). Screening of Lipase Activities with Cultures from the Agricultural Research Services Culture collection. Journal of American Oil Chemist Society 69: 1088-1097. |
[57] | Thompson, J. D.; Higgins, D. G. and. Gibson, T. J (1994). ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22: 4673-4680. |
[58] | Saitou N and Nei M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406-425. |
[59] | Tamura, K., J. Dudley, M. Nei and S. Kumar, (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24: 1596-1599. |