ISSN: 2375-3005
American Journal of Microbiology and Biotechnology  
Manuscript Information
 
 
Antifouling on Artificial Substrates of Bacillus pumilus Bacteria Against Diatom Biofilms Nitzschia ovalis arnott and Navicula incerta
American Journal of Microbiology and Biotechnology
Vol.5 , No. 3, Publication Date: Oct. 9, 2018, Page: 44-49
1120 Views Since October 9, 2018, 416 Downloads Since Oct. 9, 2018
 
 
Authors
 
[1]    

Marcela Martinez, Genesis Protector Foundation (GPF), Tres Oriente N° 362- Serena Golf, La Serena, Chile.

[2]    

Yanett Leyton, Laboratorio Mesocosmos Marino, Centro de Bioinnovación de Antofagasta (CBIA), Facultad de Ciencias del Mar y Recursos biológicos, Universidad de Antofagasta (UA), Chile.

[3]    

Carlos Riquelme, Laboratorio Mesocosmos Marino, Centro de Bioinnovación de Antofagasta (CBIA), Facultad de Ciencias del Mar y Recursos biológicos, Universidad de Antofagasta (UA), Chile.

 
Abstract
 

Microalgae and bacteria are the primary colonists of marine surfaces, forming the initial biofilm layer needed for posterior macro organism fixation. This phenomenon, termed biofouling, greatly deteriorates ships, piers, and aquaculture systems. Biofouling is currently treated with toxic and poorly degradable chemicals, resulting in significant environmental concerns. Consequently, increasing research efforts are focused on antifouling microorganisms as a measure to take care of the environment and avoid the use of harmful chemicals for marine flora and fauna. The objective of the present study was to evaluate the ability of the marine bacterium Bacillus pumilus (C32-MESO) in inhibiting to the substrate fixation of the benthic microalgae Nitzschia ovalis arnott and Navicula incerta known for forming biofilms on substrates. A total of 26 bacterial morphotypes were isolated that grow associated with microalgae cultures N. ovalis arnott and N. incerta. The results showed that the bacteria B. pumilus (C32-MESO) inhibited 96.4% of these isolated morphotypes and significantly decreased microalgae density when inoculated with the cultures. Substrate adherence assessments revealed that B. pumilus (C32-MESO) decreased the adherence of both microalgae to shell and PVC substrates. In conclusion, this study lays the foundation for future research into characterizing the active metabolites derived from B. pumilus (C32-MESO) and evaluate the biotechnological applications of this bacterium in naturally inhibiting the early stages of biofilms such as fixing to substrates of microalgae.


Keywords
 

Adherence, Antifouling, Bacteria, Bacillus, Microalgae, Navicula incerta, Nitzschia ovalis arnott


Reference
 
[01]    

Kiil S, Weinell CE, Yebra DM, Kim DJ. Chapter 7 - Marine biofouling protection: design of controlled release antifouling paints. In: Ka M. Ng RG and KD-JBT-CACE (ed) Chemical Product Design: Toward a Perspective Through Case Studies. Elsevier, 2007; 181-238.

[02]    

Palmer C, Bik EM, Eisen MB, Eckburg PB, Sana TR. Rapid quantitative profiling of complex microbial populations. Nucleic Acids Research, 2006; 34 (1): e5-e5.

[03]    

Mizobuchi S, Abachi K, Miki W. Antifouling polihidroxysterds isolated from a Palauan octocoral of Sinularia sp. Fisheries science, 1996; 62 (1): 98-100.

[04]    

Jin C, Xin X, Yu S, Qiu J, Miao L, Feng K, Zhou X. Antidiatom activity of marine bacteria associated with sponges from San Juan Island, Washington. World Journal of Microbiology and Biotechnology, 2014; 30 (4): 1325-1334.

[05]    

Kalia VC. Microbes, Antimicrobials and Resistance: The Battle Goes On. Indian Journal of Microbiology, 2014; 54 (1): 1-2.

[06]    

Campos VM. Estudio de casos Aislamiento de bacterias del hierro y azufre como productoras de biodeterioro o corrosión anaeróbica en tuberías y daño a otros materiales. Tecnología en Marcha, 2005; 18 (2): 95-102.

[07]    

Mol VL, Raveendran TV, Parameswaran PS. Antifouling activity exhibited by secondary metabolites of the marine sponge, Haliclona exigua (Kirkpatrick). International Biodeterioration & Biodegradation, 2009; 63 (1): 67-72.

[08]    

Aguilar-Ramírez RN, Hernández-Guerrero CJ, González-Acosta B, Id-Daoud G, Hewitt S, Pope J, Hellio C. Antifouling activity of symbiotic bacteria from sponge Aplysina gerardogreeni. International Biodeterioration & Biodegradation, 2014; 90: 64-70.

[09]    

Susilowati R, Sabdono A, Widowati I. Isolation and Characterization of Bacteria Associated with Brown Algae Sargassum spp. from Panjang Island and their Antibacterial Activities. Procedia Environmental Sciences, 2015; 23: 240-246.

[10]    

Qian PY, Li Z, Xu Y, Fusetani N. Mini-review: Marine natural products and their synthetic analogs as antifouling compounds: 2009–2014. Biofouling, 2015; 31: 101-122.

[11]    

Calvo S. Manual de contaminación marina y restauración del litoral: Contaminación, accidentes y catástrofes, agresiones a las costas y soluciones. El turismo de costa, la pesca, la ordenación y la gestión del litoral, 1st edn. Mundi-prensa, Madrid. 2000; No. 04; GC1085, S4. 547-557.

[12]    

Qian PY, Lau SCK, Dahms HU, Dobretsov S, Harder T. Marine Biofilms as Mediators of Colonization by Marine Macroorganisms: Implications for Antifouling and Aquaculture. Marine Biotechnology, 2007; 9 (4): 399-410.

[13]    

Fusetani N. Biotechnological potential of marine natural products. Pure and Applied Chemistry, 2010; 82 (1): 17-26.

[14]    

Satheesh S, Ba-akdah MA, Al-Sofyani AA. Natural antifouling compound production by microbes associated with marine macroorganisms-A review. Electronic Journal of Biotechnology, 2016; 19 (3): 26-35.

[15]    

Brown MV, Philip GK, Bunge JA, Smith MC, Bissett A, Lauro FM, Fuhrman JA, Donachie SP. Microbial community structure in the North Pacific ocean. The ISME Journal, 2009; 3 (12): 1374-1386.

[16]    

Villar M. Relaciones entre el fitoplancton y el bacterioplancton en el río Cataniapo estado Amazonas, Venezuela. Boletín del Centro de Investigaciones Biológicas, 2014; 47 (3): 235-239.

[17]    

Siqueiros D. Asociaciones de Diatomeas Bentónicas Marinas; Análisis de su estructura y aplicación. Universidad autónoma de Baja California Sur, Serie Científica, 1994; 2 (1): 59-71.

[18]    

Leyton Y, Borquez J, Darias J, Cueto M, Díaz-Marrero AR, Riquelme C. Diketopiperazines Produced by an Bacillus Species Inhibits Vibrio parahaemolyticus. Journal of Aquaculture Research and Development, 2012; 3 (4): 144.

[19]    

Leyton Y, Riquelme C. Oleic acid and diketopiperazines produced by marine bacteria reduce the load of the pathogen Vibrio parahaemolyticus in Argopecten purpuratus. Journal of Aquaculture & Research Development, 2013; 4 (3): 1000179.

[20]    

Leyton Y, Pohl K, Riquelme C. Inhibición de la cepa patogénica de Vibrio cholerae (tor1) por Bacillus pumilus aislados del ambiente marino. Revista de biología marina y oceanografía, 2014; 49 (3): 595-600.

[21]    

Leyton Y, Letelier A, Mata MT, Riquelme C. Bacillus pumillus Marinos Inhibidores de la Fijación de Microalgas a Sustratos Artificiales. Información tecnologica, 2017; 28 (2): 181-190.

[22]    

Silva-Aciares F, Riquelme C. Inhibition of attachment of some fouling diatoms and settlement of Ulva lactuca zoospores by film-forming bacterium and their extracellular products isolated from biofouled substrata in Northern Chile. Electronic Journal of Biotechnology, 2008; 11 (1): 60-70.

[23]    

Guillard RRL. Culture of Phytoplankton for Feeding Marine Invertebrates BT-Culture of Marine Invertebrate Animals: Proceedings-1st Conference on Culture of Marine Invertebrate Animals Greenport. In: Smith WL, Chanley MH (eds). Springer US, Boston, MA, 1975; 29-60.

[24]    

Leyton Y, Riquelme C. Marine Bacillus spp. Associated With the Egg Capsule of Concholepas concholepas (Common Name “Loco”) Have an Inhibitory Activity Toward the Pathogen Vibrio parahaemolyticus. Microbial Ecology, 2010; 60: 599-605.

[25]    

Seeley HW, Vandemark PJ, Lee JL. Microbes in action. A laboratory manual of microbiology, 4th edn. W. H. Freeman, New York, 1991. p 450.

[26]    

Dopazo CP, Lemos ML, Lodeiros C, Bolinches J, Barja JL, Toranzo A. Inhibitory activity of antibiotic-producing marine bacteria against fish pathogens. Journal of Applied Bacteriology, 1988; 65 (2): 97-101.

[27]    

Gómez-León J, Villamil L, Lemos ML, Novoa B, Figueras A. Isolation of Vibrio alginolyticus and Vibrio splendidus from aquacultured carpet shell clam (Ruditapes decussatus) larvae associated with mass mortalities. Applied and environmental microbiology, 2005; 71 (1): 98-104.

[28]    

Fuentes LJ, Garbayo I, Cuaresma M, Montero Z, González del Valle M, Vílchez C. Impact of Microalgae-Bacteria Interactions on the Production of Algal Biomass and Associated Compounds. Marine Drugs, 2016; 14 (5): 100.

[29]    

Lugioyo GM, Cabrera D, Miravet ME, Núñez R, Delgado Y, Cabrera H, Martí J. Identificación y detección de la actividad antimicrobiana de cepas de bacterias aisladas de la Zona Exclusiva Económica al sur de Cuba. 2003.

[30]    

Ragazzo-Sánchez JA, Robles-Cabrera A, Lomelí-González L, Luna-Solano G, Calderón-Santoyo M. Selección de cepas de Bacillus spp. productoras de antiobióticos aisladas de frutos tropicales. Revista Chapingo. Serie horticultura, 2011; 17: 5-11.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership