ISSN: 2375-3005
American Journal of Microbiology and Biotechnology  
Manuscript Information
 
 
Comparative Study Between Traditional Methods and Molecular Methods in Diagnosis of Bovine Tuberculosis
American Journal of Microbiology and Biotechnology
Vol.4 , No. 6, Publication Date: Oct. 13, 2017, Page: 83-90
2330 Views Since October 13, 2017, 708 Downloads Since Oct. 13, 2017
 
 
Authors
 
[1]    

Wessam Youssef, Biotechnology Department, Animal Health Research Institute, Giza, Egypt.

[2]    

Khaled Al-Amry, Microbiology Department, Cairo University, Giza, Egypt.

[3]    

Nashwa Helmy, Biotechnology Department, Animal Health Research Institute, Giza, Egypt.

[4]    

Salah El Deen Abdel Karim, Microbiology Department, Cairo University, Giza, Egypt.

[5]    

Sherif Marouf, Microbiology Department, Cairo University, Giza, Egypt.

 
Abstract
 

Mycobacterium bovis is the major causative agent of bovine tuberculosis (BTB) and part of the Mycobacterium tuberculosis complex (MTBC). BTB has an impact on the national and international economy, affects the ecosystem via transmission to wildlife and is of public health concern due to its zoonotic potential. Although still present in some industrialized countries, BTB today mostly affects developing countries lacking the resources to apply expensive test and slaughter schemes. Tuberculosis (TB) remains a global health problem despite near eradication in some developed countries. This study was conducted from early winter of 2015 to winter of 2017 to compare between conventional and molecular techniques for detection of Mycobacterium bovis (M. bovis) in Egypt. A total of 49 specimens were collected from four major abattoirs (El-Basateen- El-Monieb- Beni-Suef- Al-fayoum) to be analyzed bacteriologically and biochemically for: isolation, identification and confirmation of M. bovis with molecular methods. Only 19 isolates were found to be positive slow-growers Mycobacterium species by conventional cultivation method on solid medium (LJ medium and Stone brink) and identified biochemically to 17 M. bovis isolates and 2 isolates M. tuberculosis. Genotyping detection of Mycobacterium tuberculosis complex by amplification of ext-RD9 region by real-time PCR was carried out on positive cultures and directly on specimens. Out of 49 DNA templates extracted directly from specimens, 31 specimens were confirmed to be infected by Mycobacterium tuberculosis complex by amplification of ext-RD9 region by real-time PCR. This study reports the development and evaluation of a single-tube, two-targets, real-time PCR assay which can differentiate between M. bovis and M. tuberculosis. The multiplex real-time PCR target RD1 and RD4 using 2 sets of primers-probes. A 31 MTBC positive DNA from clinical specimens were identified by this assay as, 27 M. bovis isolates and 4 M. tuberculosis isolates. A 19 positive cultures were confirmed to be Mycobacterium tuberculosis complex were identified by this assay as, 17 M. bovis isolates and 2 M. tuberculosis isolates.


Keywords
 

M. bovis, M. tuberculosis, Real-Time PCR, Multiplex Real-Time PCR


Reference
 
[01]    

Smith, N. H., Gordon, S. V., dela Rua-Domenech, R., Clifton-Hadley, R. S. and Hewinson, R. G. (2006) Bottle necks and broomsticks: the molecular evolution of Mycobacterium bovis. NRM. 4: 670-681.

[02]    

Birhanu, T., Mezgebu, E., Ejeta, E. and Gizachew, A. (2015) Review on Diagnostic Techniques of Bovine Tuberculosis in Ethiopia. Rep Op. 1: 7-14.

[03]    

Pal, M. (2007) Zoonoses. 2nd ed. Satyam publishers, Jaipur, India. Pp. 124-125.

[04]    

Ameni, G., Vordermeier, M., Firdessa, R., Aseffa, A., Hewinson, G., Stephen, V. G. and Berg, S. (2011) Mycobacterium tuberculosis infection in grazing cattle in central Ethiopia, The Vet J. 188: 359-361.

[05]    

Zeweld, S. W. (2014) Cultural and molecular detection of zoonotic tuberculosis and its public health impacts in selected districts of Tigray region, Ethiopia. Sokoto J Vet Sc. 12: 1-12.

[06]    

Brosch, R., Gordon, S. V., Marmiesse, M., Brodin, P., Buchrieser, C., Eiglmeier, K., Garnier, T., Guitierrez, C., Hewinson, G., Kremer, K., Parsons, L. M., Pym, A. S., Samper, S., van Soolinge, D., Cole, S. T. (2002) A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc. Natl. Acad. Sci. USA 99: 3684-3689.

[07]    

Hlokwe, T. M. van Helden, P. and Michel, A. (2013) Evaluation of the Discriminatory Power of Variable Number of Tandem Repeat Typing of Mycobacterium bovis Isolates from Southern Africa. Tran Em Dis. 60: 111–120.

[08]    

Pal, M., Zenebe, N. and Rahman, M. T. (2014) Growing significance of mycobacterium bovis in human and health. Microb H. 3: 29-34.

[09]    

Awah-Ndukum, J. Kudi, A. C., Bradley, G. Ane-Anyangwe, I. P. Titanji, V. K, FonTebug, S. and Tchoumboue, J. (2013) Prevalence of bovine tuberculosis in cattle in the highlands of Cameroon based on the detection of lesions in slaughtered cattle and tuberculin skin tests of live cattle. Vet Med. 57: 59–76.

[10]    

Radostits, O. M., Gay, C. C., Hinchelift, K. W. and Constabel, P. D. (2007) Veterinary Medicine. A text book of the disease of cattle, sheep, pig, goat and horses. 10th ed., Elsevier, London. Pp. 1007-1040.

[11]    

Ewnetu, L., Melaku, A. and Birhanu, A. (2012) Bovine Tuberculosis Prevalence in Slaughtered Cattle at Akaki Municipal Abattoir Based on Meat Inspection Methods. Glob Vet. 5: 541-545.

[12]    

Russel, D. G. (2003) Highlighting the parallels between human and animal tuberculosis. J of vet med edu. 30: 140-142.

[13]    

Mamo, G., Abebe, F., Worku, Y., Hussein, N., Legesse, M., Tilahun, G., Medhin, G. Bjune, G. and Ameni, G. (2013) Bovine tuberculosis and its associated risk factors in pastoral and agro-pastoral cattle herds of Afar Region, Northeast Ethiopia. JVMAH. 6: 171-179.

[14]    

Radostits, O. M., Blood, D. C. and Gay, C. C. (1994) Diseases caused by mycobacterium. In: veterinary medicine, a text book of disease of cattle, sheep, pigs, goats and horses. 8th ed. London, Bailliere tindu. Pp. 748-785.

[15]    

Müller, B. Dürr, S. Alonso, S. Hattendorf, J., Laisse, C. J. M., Sven D. C. Parsons, Paul, D. and Zinsstag, J. (2013) Zoonotic Mycobacterium bovis induced Tuberculosis in Humans. Eme Infec Dis. 19: 899-908.

[16]    

Shitaye, J. E., Getahun, B., Alemayehu, T., Skoric, M., Treml, F., Fictum, P., Vrbas, V. and Pavlik, I. (2006) A prevalence study of bovine tuberculosis by using abattoir meat inspection and tuberculin skin testing data, histopathological and IS6110 PCR examination of tissues with tuberculous lesions in cattle in Ethiopia. Vet Med. 51: 512-522.

[17]    

Ashford, D. A., Whitney, E., Raghunathan, P. and Cosivi, O., (2001) Epidemiology of selected mycobacteria that infect humans and other animals, Scientific and Technical Review, OIE. 20: 325–337.

[18]    

Ejeh, E. F., Markus, I. F., Ejeh, A. S., Musa, J. A. Lawan, F. A., Ameh, J. A., Kudi, A. C. and Cadmus, S. I. B. (2013) Seasonal prevalence of bovine tuberculosis lesion in cattle slaughtered in Yola abattoirs. Bangl JVet Med. 11: 113-120.

[19]    

Waddington K (2004) To stamp out ‘so terrible a malady’: bovine tuberculosis and tuberculin testing in Britain, 1890– 1939. Med. Hist., 48, 29–48.

[20]    

Beyrer C, Jitwatcharanan K, Natpratan C, Kaewvichit R, Nelson K E, Chen C Y, Weiss J B, Morse S A (1998) Molecular methods for the diagnosis of genital ulcer disease in a sexually transmitted disease clinic population in Northern Thailand: predominance of the herpes simplex virus infection. J. Infect. Dis., 178: 243–246.

[21]    

Wagar E A (1996) Direct hybridization and amplification applications for the diagnosis of infectious diseases. J. Clin. Lab. Anal., 10: 312–325.

[22]    

Wolcott M J (1992) Advances in nucleic acid-based detection methods. Clin. Microbiol. Rev., 5: 370–386.

[23]    

Max M (2012) Real-time PCR as a diagnostic tool for bacterial diseases. Expert Rev. Mol. Diagn., 12 (7), 731–754.

[24]    

Springer, B., Wu, W. K., Bodmer, T., Hasse, G., Pfyffer, G. E., Kroppensted, R. M., Schroer, K. H., Emler, S., Kilbrn, J. O., Kirschner, P., Telenti, A., Coyle, M. B. and Bottger E. C. (1996) Isolation and characterization of a unique group of slowly growing mycobacteria: description of mycobacterium lentiflavum sp. J. Clinical Microbial. 34: 1100-1107.

[25]    

Baron, E. J., Peterson L. R. and Finegold, S. M. (1994) Mycobacteria. In: Bailey and Scotts (eds): diagnostic Microbiology, 9th edition. P. 590.

[26]    

Vincent, V., Brown Elliott, B. A., Jost, K. C., Jr & Wallace, R. C., Jr (2003) Mycobacterium: Phenotypic and genotypic identification. In: Manual of Clinical Microbiology, 8th edn, pp. 560-584. Edited by: P. R. Murray, E. J. Baron, M. A. Pfaller, J. H. Jorgensen & R. H. Yolken. Washington, DC: American Society for Microbiology.

[27]    

Leao, S. C., Martin, A., Mejia, G. I., Palomino, J. C., Robledo, J., Telles, M. A. S. and Portaels, F. (2004) Practical handbook for the phenotypic and genotypic identification of mycobacteria. Brugges, Vanden BROELLE; 2004.

[28]    

Beverly, G. M., Fredrick, S. N., and Richard, J. W. (1999) Mycobacterium. In Manual of clinical microbiology, Patrick R. M., Ellner J. B., Michael A. P., Fred C. T., and Robert H. Y. (ed.). Chapter. 25 p. 399-410, 7th ed. American society for microbiology. Washintgton, D. C.

[29]    

OIE (2009): Biotechnology in the diagnosis of infectious diseases and vaccine development. Chapter 1. 1.7.

[30]    

Thomson, B., (2006) Polymerase Chain Reaction detection of Mycobacteria tuberculosis complex in formalin fixed tissues. In: Mycobacterium bovis Infection in Animals and Humans, 2 ed. Eds., Thoen C. O., F. H. Steele and M. J. Gilsdorf. Iowa State University Press, Ames, Iowa, USA, pp: 63-67.

[31]    

Tanya A. Halse, Vincent E. Escuyer, Kimberlee A. Musser (2011) Evaluation of a Single Tube Multiplex Real-Time PCR for Differentiation of the 2 Mycobacterium tuberculosis Complex in Clinical Specimens. J. Clin. Microbiol. doi: 10.1128/JCM.00467-11.

[32]    

Miller J., Jenny A. & Payeur J. (2002) Polymerase chain reaction detection of Mycobacterium bovis and M. avium organisms in formalin-fixed tissues from culture-negative organisms. Vet. Micro., 2328, 1–9.

[33]    

Suheir E, Gila K B, Abedelmajeed K A, Sharif E Q, Charles L G, Mark S, Ziad A (2010) Rapid Differentiation of Mycobacterium tuberculosis and M. bovis by High-Resolution Melt Curve Analysis. J. Clin. Microbiol. 2010, 48 (11): 4269.

[34]    

Zhu, R. Y., K. X. Zhang, M. Q. Zhao, Y. H. Liu, Y. Y. Xu, C. M. Ju, B. Li and J. D. Chen, (2009) Use of visual loop- mediated isotheral amplification of rim sequence for rapid detection of Mycobacterium tuberculosis and Mycobacterium bovis.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership