ISSN: 2375-3005
American Journal of Microbiology and Biotechnology  
Manuscript Information
 
 
Overexpression, Purification, Immobilization and Characterization of Thermophilic Lipase from Burkholderia pseudomallei
American Journal of Microbiology and Biotechnology
Vol.2 , No. 6, Publication Date: Feb. 3, 2016, Page: 82-91
1675 Views Since February 3, 2016, 1161 Downloads Since Feb. 3, 2016
 
 
Authors
 
[1]    

Magdy M. Youssef, Department of Chemistry, College of Science, King Faisal University, Hofuf, Saudi Arabia; Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt.

 
Abstract
 

Lipases (EC 3.1.1.3), triacylglycerol hydrolases, are a significant group of biotechnologically applicable enzymes and they find enormous applications in food, detergent and pharmaceutical industries. Lipases are largely produced from microbes, and they play a fundamental role in commercial ventures. A lipase from thermophilic Burkholderia pseudomallei bacterial strain was isolated from Saudi Arabian environment. Based on this strain, a lipase gene encoding 399 amino acids was cloned, and expressed in E. coli BL21 (DE3). The lipase protein fused with glutathione S-transferase was purified to homogeneity 128.2 fold. SDS- PAGE of the purified enzyme revealed it has Mr of 32 kDa. The recombinant lipase was efficiently immobilized in calcium alginate gelatin composites. The optimum temperature for free enzyme highest activity was recorded at 65°C however the immobilized enzyme exhibits the highest activity at 70°C. The immobilized enzyme retains most of its activity and shows high stability for 120 min at 70°C compared to 45 minutes for the native enzyme when incubated at 70°C. The free enzyme has an optimum pH at 7.5 but this optimum pH is shifted to 8.5 for the immobilized enzyme. The free and immobilized lipase catalytic function were enhanced in the presence of 1 mM of Ba++, Ca++ and Na+, but inhibited by 1mM of Ni++, Hg++, Cu++ and Co++. The free and the immobilized enzyme activities increased in the presence of 5 mM Fe++, Co++ or Li+.


Keywords
 

Cloning, Expression, Purification, Immobilization, Characterization, Glutathione S Transferase


Reference
 
[01]    

Pronk, W., Kerkhof,P. J. van Helden, A. C, Van’t Reit, K. (1988). The hydrolysis of triglycerides by immobilized lipase in a hydrophilic membrane reactor. Biotechnol. Bioeng. 32: 512-518.

[02]    

Bornscheuer, U.T. (2002) Microbial carboxyl esterases: classification properties and application in biocatalysis. FEMES Microbiol. Rew. 26: 73- 81.

[03]    

Jaeger, K. E., Schneidinger, B., Rosenau, F., Werner, M., Lang, D., Dijkstra, B.W., Schimossek, K., Zonata, A. and Reetz, M.T. (1997). Bacterial lipases for biotechnology application. J. Mol. Catal. 3: 3-12.

[04]    

Benjamin, S., Pandey, A. (1998). Candida rugosa lipases: Molecular biology and Versatility in Biotechnology. Yeast. 14: 1069- 1087.

[05]    

Hasan, F., Shah, A., A, Hameed, A. (2006). Industrial applications of microbial lipases. Enzyme and Microb Technol, 39:235 -251.

[06]    

Ghosh P K, Saxena R K, Gupta R, Yadav R P and Davidson W S, (1996).Microbial lipases: production and applications Sci. Prog 79: 119- 157.

[07]    

Saxena, R. K, Ghosh, P K, Gupta, R , Davidson, W S, Bradoo, S., Gulati, R .(1999). Potential biocatalysis and future industry, Curr. Sci. 77: 110-115.

[08]    

Aunstrup, K. (1990). Novo Nordisk foresees bright future for genetically engineered industrial enzymes. Eur. Biotechnol. Lett. 94:3.

[09]    

De Simone, G., Menchise, V., Manco, G., Mandrich, L., Sorrentino,N. Lang, D., Rossi, M., Pedone. C. (2001). The crystal structure of a hyper. thermophilic carboxylesterase from the archaeon Archaeoglobus fulgidus. J. Mol. Biol. 314:507-518.

[10]    

Coolbear, T., R. Daniel, M.,Morgan. H. W. (1992). The enzymes from extreme thermophiles: bacterial sources, thermostabilities and industrial relevance. Adv. Biochem. Eng. Biotechnol. 45:57- 98.

[11]    

Dharmusthii, S., Luchai, S. (1999). Production, purification and characterization of thermophilic lipase from Bacillus spTHL0127.FEMS Microbiol. Lett., 179: 241- 246.

[12]    

Kambovrova, M., Kirilova, N., Mandeva, R., Derekova, A. (2003). Properties of thermostable lipase from a thermophilic Bacillus stearothermophilus MC7. J. of Molecular Catalysis B. Enzymatic, 22: 307- 313.

[13]    

Haki, G. D., and S. K. Rakshit. (2003). Developments in industrially important thermostable enzymes: a review. Bioresour. Technol. 89:17- 34.

[14]    

Bachmann, B. J. (1972). Pedigrees of some mutant strains of Escherichia coli K.12. Bacteriol. 36: 525- 557.

[15]    

Hanahan, D. (1983). Studies in transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557- 580.

[16]    

Studier, F. W. and Moffat, B. A. (1986). Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. Journal of Molecular Biology 189, 113-130.

[17]    

Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

[18]    

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227 (5259):680- 685.

[19]    

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein.dye binding. Anal Biochem 72: 248- 254.

[20]    

Holden, M.T., Titball, R.W., Peacock, S. J., Cerdeno. Tarraga, A. M., Atkins, T., et al., . (2004). Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. J. Proc. Natl. Acad. Sci. U.S.A. 101 (39), 14240- 14245.

[21]    

Arpigny, J. L., Jaeger, K. E. (1999). Bacterial lipolytic enzymes: classification and properties. Biochem J 343:177–183.

[22]    

Nardini, M., Lang, D.A., Liebeton, K., Jaeger, K.E., Dijkstra, B.W. (2000). Crystal structure of Pseudomonas aeruginosa lipase in the open conformation. The prototype for family I.1 of bacterial lipases. J Biol Chem 275:31219–31225.

[23]    

Lang, D., Hofmann, B., Haalck, L., Hecht, H.J., Spener, F., Schmid, R.D., Schomburg, D. (1996). Crystal structure of a bacterial lipase from Chromobacterium viscosum ATCC 6918 refined at 1.6 angstroms resolution. J Mol Biol 259:704–717.

[24]    

Noble, M.E., Cleasby, A., Johnson, L.N., Egmond, M.R., Frenken, L.G. (1993). The crystal structure of triacylglycerol lipase from Pseudomonas glumae reveals a partially redundant catalytic aspartate. FEBS Lett 331:123–128.

[25]    

Schrag, J.D., Li, Y., Cygler, M., Lang, D., Burgdorf, T., Hecht, H.J., Schmid, R., Schomburg, D., Rydel, T.J., Oliver, J.D., Strickland, L.C., Dunaway, C.M., Larson, S.B., Day, J,, McPherson, A. (1997), The open conformation of a Pseudomonas lipase. Structure 5:187–202.

[26]    

Nthangeni, M. B., Patterton, H. G., Van, T. A., Vergeer, W. P., Litthauer ,D. (2001) Overexpression and properties of a purified recombinant Bacillus licheniformis lipase: A comparative report on Bacillus lipases. Enzyme Microb. Technol. 28:705–712.

[27]    

Kanjanavas, P., Khuchareontaworn, S., Khawsak, P., Pakpitcharoen, A., Pothivejkul, K., Santiwatanakul, S., Matsui,K., Kajiwara, T. and Chansiri, K. (2010). Purification and Characterization of Organic Solvent and Detergent Tolerant Lipase from Thermotolerant Bacillus sp. RN2. Int J Mol Sci. 11(10): 3783–3792.

[28]    

Gupta, R., Gupta, N., and Rathi, P. (2004). Bacterial lipases: an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol 64: 763–781.

[29]    

Snellman, EA, Sullivan ER, Colwell RR (2002) Purification and properties of the extracellular lipase, Lip A, of Acinetobacter sp. RAG.1. Eur J Biochem 269:5771–5779.

[30]    

Brune, A. K., Gotz, F. (1992). Degradation of lipids by bacterial lipases. In: Winkelman G (ed) Microbial degradation of natural products. VCH, Weinhein, pp 243–266.

[31]    

Kojima, Y., Yokoe, M., Mase, T. (1994). Purification and characterization of an alkaline lipase from Pseudomonas fluorescens AK 102. Biosci Biotechnol Biochem 58:1564–1568.

[32]    

Lesuisse, E., Schanck, K., Colson, C. (1993) Purification and preliminary characterization of the extracellular lipase of Bacillus subtilis 168, an extremely basic pH.tolerant enzyme. Eur J Biochem 216:155–160.

[33]    

Nawani, N., Singh, R. and Kaur, J. (2006). Immobilization and stability of a lipase from thermophilic Bacillus sp.: The effect of a process parameters on immobilization of enzyme. Electro. J. Biotechnol., 9(5): 563- 565.

[34]    

Lee, D.W., Kim, H.W. Lee, K.W. Kim, B.C. Choe, E.A., Lee, H.S. Kim D.S. Pyun, Y.R. (2002). Purification and characterization of two distinct themostable lipases from the Gram.positive thermophilic bacterium Bacillus thermoleovorans ID.1. Enzyme and Microbial Techno. logy. 29, 363- 371.

[35]    

Gopinath, C., Hildal, A., Priya T., Annadurai, G. (2002). Purification of lipase from Cunninghamela verticillata and optimization of enzyme activity using response surface methodology. World J. Microbiol. Biotechnol., 18: 449- 458.

[36]    

Ogino, H., Nakagawa, S., Shinya, K., Muto, T., Fujimura, N., Yasudo, M., Ishikawa, H. (2000). Purification and characterization of organic solvent tolerant lipase from organic solvent tolerant Pseudomonas aeruginosa LST.03, J. Biosci. Bioeng. 89 451–457.

[37]    

Jinwal, U. K. Roy, U. Chowdhury, A.R. Bhaduri, A.P. Roy, P. K. (2003). Purification and characterization of an alkaline lipase from a newly isolated Pseudomonas mendocina PK.12CS and chemoselective hydrolysis of fatty acid ester, Bioorg. Med. Chem. 11 1041–1046.

[38]    

Gilbert, E.J. Cornish, A. Jones,C.W. (1991). Purification and properties of extracellular lipase from Pseudomonas aeruginosa EF2, J. Gen. Microbiol. 137 2223–2229.

[39]    

Lin, S. F., Chiou, C. M., Yeh, C.M., Tsai,Y.C. (1996). Purification and partial characterization of an alkaline lipase from Pseudomonas pseudoalcaligenes F.111, Appl. Environ. Microbiol. 62 1093–1095.

[40]    

Iizumi, T. Nakamura, K. Fukase,T. (1990). Purification and characterization of a thermostable lipase from newly isolated Pseudomonas sp. KWI.56, Agric. Biol. Chem. 54 1253–1258.

[41]    

Sugihara, A., Ueshima, M., Shimada,Y., Tsunasawa,S., Tominaga,Y. (1992) . Purification and characterization of a novel thermostable lipase from Pseudomonas cepacia, J. Biochem. 112 598– 603.

[42]    

Surinenaite, B., Bendikiene, V., Juodka, B., Bachmatova, I., Marcinkevichiene, L. (2002). Characterization and physicochemical properties of a lipase from Pseudomonas mendocina 3121.1. Biotechnol Appl Biochem 36:47–55.

[43]    

Kim, E. K., Sung, M. H., Kim, H. M., Oh, T. K. (1994). Occurrence of thermostable lipase in thermophilicBacillus sp. strain 398. Biosci Biotechnol Biochem 58:961– 962.

[44]    

Abdou, A. M. (2003). Purification and partial characterization of psychrotrophic Serratia marcescens lipase. J Dairy Sci 86:127– 132.

[45]    

Oh, B.C., Kim, H. K., Lee, J.K., Kang, S.C., Oh, T. K. (1999). Staphylococcus haemolyticus lipase: biochemical properties, substrate specificity and gene cloning. FEMS Microbiol Lett 179: 385– 392.

[46]    

Rathi, P., Bradoo, S., Saxena, R. K., Gupta, R. (2000). A hyperthermostable, alkaline lipase from Pseudomonas sp. with the property of thermal activation. Biotechnol Lett 22:495– 498.

[47]    

Rathi P, Saxena R. K, Gupta R. (2001). A novel alkaline lipase from Burkholderia cepacia for detergent formulation. Process Biochem 37:187–192.

[48]    

Lee, O. W., Koh, Y. S., Kim, K. J., Kim, B. C., Choi, H. J, Kim, D. S, Suhartono, M.T., Pyun, Y. R. (1999) Isolation and characterization of a thermophilic lipase from Bacillus thermoleovorans ID.1. FEMS Microbiol Lett 179:393– 400.

[49]    

Dong H, Gao S, Han S, Cao S. (1999). Purification and characterization of a Pseudomonas sp. lipase and its properties in non. aqueous media. Appl Microbiol Biotechnol 30:251–256.

[50]    

Ghanem EH, Al.Sayeed HA, Saleh KM (2000) An alkalophilic thermostable lipase produced by a new isolate of Bacillus alcalophilus. World J Microbiol Biotechnol 16:459– 464.

[51]    

Khyami-Horani, H. (1996). Thermotolerant strain of Bacillus licheniformis producing lipase. World J Microbiol Biotechnol 12:399–401.

[52]    

Voet, D. Voet, J.G. Pratt,C.W. (1960). Fundamentals of Biochemistry, John Wiley, New York,

[53]    

Palmer, T. (1985). Understanding Enzymes. Second Edirion. Ellis Horwood Limited. John Willey and Sons, New York.

[54]    

Bradoo, S., Rathi, P., Saxena, R. K., Gupta, R. (2002). Microwave. assisted rapid characterization of lipase selectivities. J Biochem Biophys Methods 51:115–120.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership