About Communications       Author's Guide       Reviewers       Editorial Members       Archive
Archive
Volume 8
2021
Volume 7
2020
Volume 6
2019
Volume 5
2018
Volume 4
2017
Volume 3
2016
Volume 2
2015
Volume 1
2014
AASCIT Communications | Volume 2, Issue 2 | Feb. 15, 2015 online | Page:25-28
A Review of Signal Parameter Estimation Techniques
Abstract
In signal analysis, the signals to be detected usually contain unknown parameters such as amplitude, time delay, phase, and frequency; these parameters must be estimated prior to the signal detection. The techniques used to estimate these signal parameters can be broadly classified into two main categories known as parametric and non-parametric methods. This paper presents a review of these signal parameter estimation techniques.
Authors
[1]
Olusegun A. Aboaba, Department of Electrical and Computer Engineering, Curtin University, Perth, Western Australia.
Keywords
Parametric and Non-Parametric Methods, Signal Parameter Estimation
Reference
[1]
B. C. Levy, Principles of Signal Detection and Parameter Estimation. Boston, MA: Springer, 2008.
[2]
S. L. Marple, Digital Spectral Analysis with Applications. Englewood Cliffs, New Jersey: Prentice-Hall Inc., 1987, ch. 5-6.
[3]
S. M. Kay, Modern Spectral Estimation: Theory and Application. Englewood Cliffs, New Jersey: Prentice-Hall Inc., 1988, ch. 4-5.
[4]
P. Stoica and R. Moses, Introduction to Spectral Analysis. Upper Saddle River, New Jersey: Prentice-Hall Inc., 1997, ch. 2-4.
[5]
H. Krim and M. Viberg, “Two decades of array signal processing research: the parametric approach,” IEEE Signal Processing Magazine, vol. 13, no. 4, pp. 67-94, 1996.
[6]
G. Walker, “On Periodicity in Series of Related Terms,” Proc. of the Royal Society of London, vol. 131, no. 818, pp. 518-532, 1931.
[7]
B. H. Fleury, M. Tschudin, R. Heddergott, D. Dahlhaus, and K. L. Pedersen, “Channel parameter estimation in mobile radio environments using the SAGE algorithm,” IEEE Journal on selected areas in communications, vol. 17, no. 3, pp. 434-450, 1999.
[8]
M. Feder and E. Weinstein, “Parameter Estimation of Superimposed Signals Using the EM Algorithm,” IEEE Trans. on Acoustics, Speech, and Signal Processing, vol. 36, no. 4, pp. 477-489, 1988.
[9]
C. W. Therrien, Discrete Random Signals and Statistical Signal Processing. Englewood Cliffs, New Jersey: Prentice-Hall Inc., 1992.
[10]
R. O. Schmidt, “Multiple Emitter Location and Signal Parameter Estimation,” IEEE Trans. on Antennas and Propagation, vol. 34, no. 3, pp. 276-280, 1986.
[11]
R. Kumaresan and D. W. Tufts, “Estimating the Angles of Arrival of Multiple Plane Waves,” IEEE Trans. on Aerospace and Electronic Systems, vol. 19, no. 1, pp. 134-139, 1983.
[12]
R. Roy and T. Kailath, “ESPRIT-Estimation of Signal Parameters via Rotational Invariance Techniques,” IEEE Trans. on Acoustics, Speech and Signal Processing, vol. 37, no. 7, pp. 984-995, 1989.
[13]
O. A. Aboaba, “High-resolution multipath channel parameter estimation using wavelet analysis,” Ph.D. dissertation, Dept. Elect. and Comp. Eng., Curtin Univ., Perth, WA, 2014.
[14]
S. M. Kay and S. L. Marple, “Spectrum Analysis - A Modern Perspective,” Proc. of the IEEE, vol. 69, no. 11, pp. 1380-1419, 1981.
[15]
P. Stoica and A. Nehorai, “Study of the statistical performance of the Pisarenko harmonic decomposition method,” IEE Proceedings F, vol. 135, no. 2, pp. 161-168, 1988.
[16]
R. Kumaresan and D. W. Tufts, “Improved Spectral Resolution III: Efficient Realization,” Proc. of the IEEE, vol. 68, no. 10, pp. 1354-1355, 1980.
[17]
R. Kumaresan and D. W. Tufts, “Estimating the Angles of Arrival of Multiple Plane Waves,” IEEE Trans. on Aerospace and Electronic Systems, vol. 19, no. 1, pp. 134-139, 1983.
[18]
M. Pourkhaatoun and S. A. Zekavat, “High-resolution independent component analysis based time-of-arrival estimation for line-of-sight multipath environments,” IET Communications, vol. 5, no. 10, pp. 1440-1452, 2011.
[19]
K. V. Rangarao and S. Venkatanarasimhan, “gold-MUSIC: A Variation on MUSIC to Accurately Determine Peaks of the Spectrum,” IEEE Trans. on Antennas and Propagation, vol. 61, no. 4, pp. 2263-2268, 2013.
Arcticle History
Submitted: Jan. 28, 2015
Accepted: Feb. 10, 2015
Published: Feb. 15, 2015
The American Association for Science and Technology (AASCIT) is a not-for-profit association
of scientists from all over the world dedicated to advancing the knowledge of science and technology and its related disciplines, fostering the interchange of ideas and information among investigators.
©Copyright 2013 -- 2019 American Association for Science and Technology. All Rights Reserved.