ISSN Print: 2472-9736  ISSN Online: 2472-9752
AASCIT Journal of Materials  
Manuscript Information
 
 
Experimental Study and Modeling of Polytetrafluoroethylene (PTFE) and Hydroxyapatite Biocomposite Surface Treatment Using Selective Laser Sintering
AASCIT Journal of Materials
Vol.1 , No. 4, Publication Date: Oct. 10, 2015, Page: 75-82
2624 Views Since October 10, 2015, 942 Downloads Since Oct. 10, 2015
 
 
Authors
 
[1]    

M. E. Khosroshahi, Laser and Nanobiophotonics Laboratory, Biomaterial Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran; Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Canada.

[2]    

H. Safaralizadeh, Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran.

[3]    

A. Anzanpour, Laser and Nanobiophotonics Laboratory, Biomaterial Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.

 
Abstract
 

The selective laser sintering (SLS) is a rapid prototyping (RP) process which uses laser surface treatment to produce consolidation of powder materials. To obtain an efficient SLS, the optical parameters such as laser power, scanning velocity as well as the material properties must be optimized. In this paper, the SLS of biocomposite of Hydroxyapatite (HA) and polytetrafluoroethylene (PTFE) as secondary polymeric binder is investigated. Microstructural assessments of the samples were conducted using scanning electron microscopy (SEM). To study the effect of laser power on the strength of specimens, pressure test were carried out. Depth of sintering layer and its correlation with laser power numerically is explored. In our case, the best sintering condition was achieved at 3 W and 1 mm/s.


Keywords
 

Selective Laser Sintering, Rapid Prototyping, Biocomposite, Polytetrafluoroethylene, Hydroxyapatite


Reference
 
[01]    

Xiong C X, Wang T, Liu Q H, et al. Study on Preparation and Structure Characterization of Nano - crystalline poly (vinylchloride) [J]. J Appl Polym Sci, 2004.19 (1): 563 - 569.

[02]    

Montagen J., Sarnet Th., Prat Ch., et al, High intensity KrF excimer laser processing of metal surfaces. Appl. Sur. Sci. 69 (1993) 108 - 114.

[03]    

Solla E., Borrajo J., Gonzales, etal Plasma assisted pulsed laser deposition of hydroxyapatite thin films. Appl. Surf. Sci. 248 (2005) 360 - 364.

[04]    

Khosroshahi M.E., M. Mahmoodi, H. Saeedinasab, et al, Evaluation of mechanical and electrochemical properties of laser surface modified Ti - 6Al - 4V for biomedical applications: in vitro study. Appl. Surf. Sci. 24 (2008) 209 - 2018.

[05]    

Lima M., V. M. Correlo, R. Reis, Micro/nano replication and 3D assembling technique for scaffold fabrication. Mat. Sci. Eng. C 42 (2014) 625 - 218.

[06]    

Gibson, D. Shi, Material properties and fabrication parameters in selective laser sintering Process, Rapid Prototyping Journal, 3 (1997) 129 - 136.

[07]    

Wiria F., Leong K., Chua C., Modeling of powder particle heat transfer process in selective laser sintering for fabricating tissue engineering scaffolds, Rapid prototyping J. 16 (2010) 400 - 410.

[08]    

Tan K., Chua C., Leong K., Cheah C., et al, Scaffold development using selective laser sintering of polyetheretherketon - hydroxyapatite biocomposites blends, Biomat. 24 (2003) 3115 - 3123.

[09]    

Hu J., Tosto S., Guo Z., Wang C., Functionally graded material by laser sintering, Lasers in Eng. 12 (2002) 239 - 245.

[10]    

Chua C. K., Leong K., Rapid Prototyping: Principles and Applications in Manufacturing, Wiley, New York, 1997.

[11]    

Costa Santos E., Shiomi M., Osakada K., et al, Rapid manufacturing of metal components by laser forming, Int. J. Machine 46 (2006) 1459 - 1468.

[12]    

A. Franco, M. Lanzetta, L. Romoli, Experimental analysis of selective laser sintering of polyamide powders: an energy perspective, Journal of Cleaner Production (2010) 1722 - 1730.

[13]    

Lu L., Futh J., Laser Induced Materials and Processes for Rapid Prototyping, Kluwer Publishers, Dordrecht, 2001.

[14]    

Badrinarayan B., Barlow J., Effect of processing parameters in SLS of metal - polymer powders, Solid Freeform Fabrication Symposium, Astin - Texas, (1995) 55 - 63.

[15]    

Salmoria G., Leite J., Ahrens C., et al, Rapid manufacturing of PA/HDPE blend specimens by selective laser sintering, Microstructural Characterization, Polymer Testing 26 (2007) 361 - 368.

[16]    

Olakanmi E., Cochrane R., Dalgarno K., Densification mechanism and microstructural evolution in selective laser sintering of Al–12 Si powders, J. of Mat. Proc. Tech. 211 (2011) 113 - 121.

[17]    

Wiria F., Leong K., Chua C., Liu Y., Poly - e - caprolactone/Hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering, Acta materialia 3 (2007) 1 - 12.

[18]    

Cappelli E., Orlando S., Sciti D., Montozzi M., Pandolfi L., Ceramic surface modification induced by pulsed laser treatment, Appl. Sur. Sci. 154 - 155 (2000) 682 - 688.

[19]    

Sudarmadji N., Tan J., Leong K, et al, Investigation of the mechanical properties and porosity relationships in selective laser –sintered polyhedral for functionally graded scaffolds, Acta Biomater. 7 (2011) 530 - 537.

[20]    

Chen Ch., Lee M., Shyu V., et al, Surface modification of polycaprolactone scaffolds fabricated via selective laser sintering for cartilage tissue engineering, Mat. Sci. Eng. C 40 (2014) 389 - 397.

[21]    

Tampieir A., Celotti G., Szontagh F., Landi E., Sintering and characterization of HA and TCP bioceramics with control of their strength and phase purity, J. Mat. Sci: Mat. In Med. 8 (1997) 29 - 37.

[22]    

Suman Das, Selective laser sintering of polymers, polymer - ceramic composites, Virtual Prototyping & Bio. Manufacturing in Medical Applications, (2008) 229 - 260.

[23]    

Kumar S., Kruth J., Composites by rapid prototyping technology, Materials & design 31 (2010) 850 - 856.

[24]    

Eosoly S., Brabazon D., Lohfeld S., Looney L., Selective laser sintering of hydroxyapatite/poly - e - caprolactone scaffolds, Acta Biomaterialia 6 (2010) 2511 - 2517.

[25]    

Duan B., Wang M., Zhou W., Cheung W., et al, Three - dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering, Acta Biomaterialia 6 (2010) 4495 - 4505.

[26]    

Cappelli E., Orlando S., Sciti D., Montozzi M., Pandolfi L.,, Ceramic surface modification induced by pulsed laser treatment, Appl. Surf. Sci., 154 - 155 (2000) 682 - 688.

[27]    

Festa R., Manca O., Naso V., A comparison between models of thermal fields in laser and electron beam surface processing, Int. J. Hear Mass Transfer. 31 (1988) 99 - 106.

[28]    

Sun M., Physical modeling of the selective laser sintering process, PhD thesis, The University of Texas at Austin, Austin, TX, 1992.

[29]    

Nelson J., Joel S., Barlow W., Beaman J., Marcus H., Model of the Selective laser sintering of bisphenol - A polycarbonate, Ind. Eng. Chem. Res., 32 (1993) 2305–2317.

[30]    

Yagi S., Kunii D., Studies on effective thermal conductivities in packed beds, AICh E Journal, 3 (1957) 371 - 381.

[31]    

Veil N., Balasubramanian B., A thermal model of polymer degradation using selective laser sintering polymer coated ceramic powder, Rapid Prototyping J. 2 (1995) 24 - 40.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership