Vol.2 , No. 6, Publication Date: Dec. 17, 2015, Page: 79-91
[1] | A. Ben Fradj, Institute National of Research and Physico-Chemical Analysis, Laboratory of Materials, Ministry of Research, Sidi Thabet, Tunisia. |
[2] | M. Ben Moussa, Institute National of Research and Physico-Chemical Analysis, Laboratory of Materials, Ministry of Research, Sidi Thabet, Tunisia; Superior School of Sciences and Technology of Tunis, Laboratory of Materials and Processes, Department of Physics, University of Tunis, Tunis, Tunisia; College of Applied Sciences, Department of Physics, Umm Al Qura University, Makkah, Saudi Arabia. |
[3] | M. Abdellaoui, Institute National of Research and Physico-Chemical Analysis, Laboratory of Materials, Ministry of Research, Sidi Thabet, Tunisia. |
[4] | J. Lamloumi, Superior School of Sciences and Technology of Tunis, Laboratory of Materials and Processes, Department of Physics, University of Tunis, Tunis, Tunisia. |
The structural, thermodynamic and electrochemical properties of the MmNi3.55Mn0.4Al0.3Fe0.75 compound, used as negative electrode of Ni – MH accumulator, are studied and compared to those of MmNi3.55Mn0.4Al0.3Co0.75 electrode. The thermodynamic results show that the total substitution of cobalt by iron leads to a decrease solid – gas capacity measured at 25°C from 5.5 H/mol to 3.93 H/ mol for MmNi3.55Mn0.4Al0.3Co0.75 and MmNi3.55Mn0.4Al0.3Fe0.75 compounds, respectively. The electrochemical discharge capacity for the MmNi3.55Mn0.4Al0.3Co0.75 compound reaches its maximum of 270 mAh/g after 12 cycles and then decreases to 200 mAh/g after 25 cycles. However, the electrochemical discharge capacity of the MmNi3.55Mn0.4Al0.3Fe0.75 compound reaches its maximum value of 200 mAh/g after 9 cycles and then decreases to 180 mAh/g after 25 cycles. The decrease of the discharge capacity for the two alloys is attributed to the corrosion and deprecipitation of the alloys in the KOH aqueous solution. The value of the hydrogen diffusion coefficient DH determined by the cyclic voltammetry are equal to 5.85 10-10 cm2 s-1 and 3.96 10-10 cm2 s-1 for MmNi3.55Mn0.4Al0.3Co0.75 and MmNi3.55Mn0.4Al0.3Fe0.75 compounds, respectively. The hydrogen diffusion coefficient determined by electrochemical impedance spectroscopy (EIS), corresponding to 10 and 100 of the charge state are equal to 6.64 10-10 cm2 s-1 ( phase) and 1.6 10-10 cm2 s-1 ( phase) for the MmNi3.55Mn0.4Al0.3Co0.75 alloy. However, for the MmNi3.55Mn0.4Al0.3Fe0.75, the hydrogen diffusion coefficient are equal to 7.27 10-10 cm2 s-1 ( phase) and 2.51 10-10 cm2 s-1 ( phase).
Keywords
Batteries, Hydrogen, Solid-Gas Method, Cyclic Voltammetry, Electrochemical Impedance Spectroscopy, Hydrogen Diffusion Coefficient
Reference
[01] | A. Percheron – Guégan, J. C. Achard, J. Sarradin, G. Bronoel, Electrode material based on lanthanum and nickel materials, French patents 75 161 160 (1975), and 7723812 (1977); US patent 688537 (1978). |
[02] | J. Bouet, B. Knosp, A. Percheron – Guégan, J. M.Cociantelli, Matériau hydratable pour électrode négative d’accumulateur Nickel – hydrure, french patent 92 14662 (1992). |
[03] | X. Yuan, N. Xu, J. Alloys Comp. 316 (2001) 113-117. |
[04] | H. Ye, H. Zhang, J. X. Cxheng, T. S. Huang, J. Alloys Comp. 308 (2000) 163-171. |
[05] | H. Pan, Y. Chen, C. Wang, J. X. Ma, C. P. Chen, Q. D. Wang, Electrochim. Acta 44 (1999) 2263-2269. |
[06] | J. X. Ma, H. Pan, Y. Zhu, S. Li, C. P. Chen, Q. Wang, Electrochim. Acta 46(2001) 2427-2434. |
[07] | C. Iwakwra, K. Fukuda, H. Senoh, H. Inoue, M. Matsuoka, Y. Yanamato, Electrochim. Acta 43(14) 2041-2046. |
[08] | R. Baddour-Hadjem, J. P. Pereira –Ramos, M. Lattroche, A. Percheron-Guégan, ITE Letters on Batteries, New Technologies andMedicine 1(2000) 29-37. |
[09] | H. Mathouthi, C. Khaldi, M.Ben Moussa, J. Lamloumi, A. Percheron –Guégan, J. Alloys Comp.375 (2004) 297-304. |
[10] | C. J. Li , X-L. Wang, C-Y-Wang, J. Alloys Comp. 293-295 (1999) 742-746. |
[11] | T. Sakai, H. Miyamura, N. Kuriyama, H. Ishikawa, I. Uehara, F. Meli, J.Alloys Comp. 238 (1996) 128. |
[12] | Chuab-Jan Li, Feng-Rong Wang, Wen-Hao Cheng, Wei Li, Wen-Tong Zhoo, J. Alloys Comp. 315 (2001) 218-223. |
[13] | Y. Zhao, Y. Zhang, G. Wang, X. Dong,S.Guo, X. Wang, J. Alloys Comp. 388 ( 2005) 284–292. |
[14] | H. Pan, J. Ma, C. Wang, S. Chen, X. Wan, C. Chen, Q. Wang, J. Alloys Comp. 293 (1999) 648-652. |
[15] | M. Geng, J. W. Han, F. Feng, O. Derek, N. Wood, J. Electrochem. Soc. 146 (1999) 2371-2375. |
[16] | A. J. Bard, L. R. Faulkner, Electrochimie: Principes, Methodes et applications, Masson, Paris, (1983). |
[17] | C. Weixiang, J. Power Sources 90 (2000) 201-205. |
[18] | G. Zheng, B. N. Popov. R. E. White, J. Electrochem. Soc. 146 (1999) 3639-3643. |
[19] | J. Cranck, the Mathematics Of Diffusion, 2nd ed., Clarendon press, Oxford, 1975 91. |
[20] | W. Zhang, M. P. S. Kumar, J. Electrochem. Soc. 142 (1995) 2935-2943. |
[21] | H. Yang,Y. Zhang, Z. Zhou, J. Wei, G. Wang, D. Song, X. Cao, C. Wang, J. Alloys Comp. 231 (1995) 625-630. |
[22] | M. Ben Moussa, M. Abdellaoui, H. Mathlouthi, J. Lamloumi, A. PercheronGuégan, J. Alloys Comp. 400 (2005) 239-244. |
[23] | Lars Ole Valen, AndrzejLasia, Jens Oluf Jensen, ReidarTunold, Electrochim. Acta 47 (2002) 2871-2884. |
[24] | M. Ben Moussa, M. Abdellaoui, C. Khaldi, H. Mathlouthi, J. Lamloumi, A. PercheronGuégan, J. Alloys Comp. 399 (2005) 264-269. |
[25] | M. Ben Moussa, M. Abdellaoui, J. Lamloumi, A. PercheronGuégan, J. Alloys Comp. 575 (2013) 414-418. |
[26] | M. Ben Moussa, M. Abdellaoui, H. Mathlouthi, J. Lamloumi, A. PercheronGuégan, J. Alloys Comp. 458 (2008) 410-414. |