Vol.4 , No. 1, Publication Date: Jun. 6, 2017, Page: 1-8
[1] | Ben Messaoud Btissam, Soil & Environment Microbiology Unit, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco. |
[2] | Nassiri Laila, Soil & Environment Microbiology Unit, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco. |
[3] | Ibijbijen Jamal, Soil & Environment Microbiology Unit, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco. |
The present research aims to evaluate the effect of arbuscular mycorrhizal fungi (AMF) and rhizobial inoculations, singly and combined, on the growth and the mineral nutrition of the forage shrub Bituminaria bituminosa. Four varieties of Bituminaria bituminosa (Mijas, Perdiz, Tenerife and B.bituminosa sp) were used and inoculated with Rhizobium radiobacter sole, or with one of the three species of AMF (Glomus clarum, Gigaspora rosea and Glomus deserticola) or with mixture of these symbiotic microorganisms (Rhizobium + AMF) at the same time. Plant growth was performed in a mixture of sand and soil poor in phosphorus. The essay was realized at the greenhouse the Faculty of Sciences, Moulay Ismail University. A positive response was recorded in the case of double inoculation and has improved both plant growth and mineral assimilation. The results showed an increase in the growth of the shoot dry matter twice compared with un-inoculated controls. About the relative efficiency of the accumulation of macro-essential elements, we noticed an improvement compared to controls absolute, 3 to 5 times the amount of nitrogen, 5 to 9 times for phosphorus and 3 to 6 times for potassium. The combination that gave the best response was that of Mijas - Glomus clarum –Rhizobium radiobacter. In summary, the microbial biofertilizers could be recommended to farmers to improve the nitrogen and phosphate nutrition for the deficient soils, which allowed reducing the utilization of the chemical fertilizers and consequently reducing the risk of pollution.
Keywords
Bituminaria bituminosa, Arbuscular Mycorrhizal Fungi, Rhizobium radiobacter, Inoculation, Growth, Mineral Nutrition
Reference
[01] | Fikri Benbrahim K, Ismaili M. Interaction in the symbiosis of Acacia saligna with Glomus mosseae and Rhizobium in a fumigated and unfumigated soil. Arid Land Research and Management. 2002; 16. pp 365–376. |
[02] | Nahal, I. Facteurs édaphiques, lutte contre l’érosion, et désertification, en région méditerranéenne, Collection “Sols”, No. 14. Institut National Agronomique, Paris Grignon. 1984. |
[03] | Bhattarai I. D., Mishra R. R. Study on the vesicular–arbuscular mycorrhiza of three cultivars of potato (Solanum tuberosum L.). Plant Soil. 1984; 79, 299–303. |
[04] | Smith S. E, Gianinazzi-Pearson V. Physiological interactions between symbionts in vesicular-arbiscular mycorrhizal plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 1988; 39: 221-244. |
[05] | Kucey R. M. N, Bonetti R. Effect of vesicular-arbuscular mycorrhizal fungi and captan on growth and nitrogen fixation by Rhizobium-inoculated field beans. Can. J. Soil Sci. 1988; 68: 143-149. |
[06] | Giovanetti M, Mosse B. An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytologist. 1980; 84: 489-500. |
[07] | Clapp, J. P., Young, J. P. W., Merryweather, J. W., Fitter, A. H. Diversity of fungal symbionts in arbuscular mycorrhizas from anatural community. New Phytol. 1995; 130, 259–265. |
[08] | Douds D. D, Galvez L, Becard G, Kalpulnik Y. Regulation of arbuscular mycorrhizal development by plant host and fungus species in alfalfa. New Phytol. 1998; 138, 27–35. |
[09] | Sternberg M, Gishri N, Mabjeesh S. J. Effects of grazing on Bituminaria bituminosa (L.) Stirton: a potential forage crop in Mediterranean grasslands. - J. Agron. Crop Sci. 2006; 192: 399- 407. |
[10] | Mosse B. Plant growth responses to vesicular-arbuscular mycorrhiza. X. Responses of Stylosanthes and maize to inoculation in unsterile soils. New Phytologist. 1977; 78:277-288 |
[11] | Bagayoko M, George E, Römheld V, Buerkert A. Effects of mycorrhizae and phosphorus on growth and nutrient uptake of millet, cowpea and sorghum on a West African soil. Journal of Agricultural Science. 2000; 135: 399-407. |
[12] | Tajini F, Trabelsi M, Drevon J.J. Combined inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases phosphorus use efficiency for symbiotic nitrogen fixation in common bean (Phaseolus vulgaris L.). Saudi Journal of Biological Sciences. 2012; 19, 157–163. |
[13] | Gianinazzi S, Oubaha L, Chahbandar M, Blal B, Lemoine MC. Biotization of microplants for improved performance. In: “Proceedings of the XXVI International Horticultural Congress: Biotechnology in Horticultural crop Improvement: achievement, opportunities and limitations”, Hammerschlag FA, Saxena P (eds). ISHS, Acta Horticulturae, Belgium, 2003; 625: 165-172. |
[14] | Sanginga N, Carsky R. J, Dashiell K. Arbuscular mycorrhizal fungi respond to rhizobial inoculation and cropping systems in farmer’s field in the Guinea savanna. Biology and Fertility of Soils. 1999; 30: 179-186. |
[15] | Brundrett M, Beegher N, Dell B, Groove T, Malajczuk N. Working with mycorrhizas in Forestry and Agriculture. 1996; ACIAR Monograph 32.374+xp. ISBN. 186320 18 15. |
[16] | Ermana M, Demirb S, Ocakc E, Tüfenkc S, Orguz F, Akköprü A. Effects of Rhizobium, arbuscular mycorrhiza and whey applications on some properties in chickpea (Cicer arietinum L.) under irrigated and rainfed conditions 1—Yield, yield components, nodulation and AMF colonization. Field Crops Research. 2011; 122, 14–24. |
[17] | Hatice O, Ömer F, Erdal E, Faik K. The Determination of Symbiotic Effectiveness of Rhizobium Strains Isolated from Wild Chickpeas Collected from High Altitudes in Erzurum. Turk. J. Agric. Forest. Sci, 2008; 32(4): 241-248. |
[18] | Ogutcu H, Algur O. F, Elkoca E, Kantar F. The determination of symbiotic effectiveness of Rhizobium strains isolated from wild chickpea collected from high altitudes in Erzurum. Turk. J. Agric. Forest. Sci., 2008; 32: 241-248. |
[19] | Rigby D, Caceres D. Organic farming and the sustainability of agricultural systems. Agric. Syst., 2001; 68: 21-40. |
[20] | Lee J. Y, Song S. H. Evaluation of groundwater quality in coastal areas: implications for sustainable agriculture. Environ. Geol. 2007; 52: 1231-1242. |
[21] | Bourgaud F, Nguyen C, Guckert A. Psoralea species: in vitro culture and production of furanocoumarins and other secondary metabolites. In Y. P. S. Bajaj (Ed.), Biotechnology in agriculture and forestry, vol. 33. Medicinal and aromatic plants VIII. (pp. 388–411). 1995; Berlin: Springer. |
[22] | Walker D. J, Moñino I, Correal E. Genome size in Bituminaria bituminosa (L.) C. H. Stirton (Fabaceae) populations: separation of “true” differences from environmental effects on DNA determination. Environmental and Experimental Botany. 2006: 55, 258–265. |
[23] | Walker D. J, Romero P, Correal E. Cold tolerance, water relations and accumulation of osmolytesin Bituminaria bituminosa. Biologia Plantarum, 2010; 54 (2): 293-298 |
[24] | Phillips, J. M. and D. S. Hayman. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society. 1970; 55: 157-160 |
[25] | Giovannetti, M. et Mosse, B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 1980; 84: 489-500. |
[26] | Harley J. L, Smith S. E. Mycorrhizal Symbiosis. Academic Press, London. 1983. |
[27] | Mengej A, Johnsone L. V, Plattr G. Mycorrhizal dependency of several citrus cultivars under three nutrient regimes. New Phytologist. 1978; 81, 553-559. |
[28] | Plenchette C. A, Fortin A, Forlan N. Growth response of several plant species to mycorrhiza in a soil of moderate P-fertility. I. Mycorrhizaea under field conditions. Plant Soil. 1983; 70: 199-203. |
[29] | Bremner J. M, Mulvaney C. S. Nitrogen-total. In: Page AL, Miller RH, Keeney DR, eds. Methods of Soil Analysis Part II. Chemical and Microbiological Properties. Monograph 9. Madison, Wisconsin; American Society of Agronomy & Soil Science Society of America. 1982; 595-624. |
[30] | Vincent J. M., A Manual for the Practical Study of Root Nodule Bacteria, firsted, Oxford Publication for the International Biological Program. 1970; 164: p |
[31] | Appunu, C., A. N Zoue, and G. Laguerre. Genetic diversity of native bradyrhizobia isolated from soybeans (Glycine max L.) in different agricultural-ecological-climatic regions of India. Appl. Environ. Microbiol. 2008; 74:5991–5996. |
[32] | Green, P. J. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 1995; 82: 711-732. |
[33] | Weisburg, W. G., Barns, S. M., Pelletier, D. A., Lane, D. J. 16S ribosomal amplification for phylogenetic study. J Bacteriol. 1991; 173: 697-703. |
[34] | Carling D. E, Brown M. F. Relative effect of vesicular-arbuscular mycorrhizal fungi on the growth and yield of Soybean. Soil Sci. Soc. Am. J. 1980; 44: 528-532. |
[35] | Korir H, Mungai NW, Thuita M, Hamba Y and Masso C. Co-inoculation Effect of Rhizobia and Plant Growth Promoting Rhizobacteria on Common Bean Growth in a Low Phosphorus Soil. 2017. Front. Plant Sci. 8:141. doi: 10.3389/fpls.2017.00141 |
[36] | Azcon-Aguilar C, Barea J. M. Field inoculation of Medicago Sativa with vesicular-arbuscular mycorrhiza and Rhizobium meliloti in phosphate fixing agricultural soil. Soil Biol. Biochem. 1981; 13: 19-22. |
[37] | Ben Messaoud B, Nassiri L, Ibijbijen J. Effects of Rhizobia and Mycorrhizae Inoculations on the Growth and Nodulation of Chamaecytisus proliferus. International Journal of Agricultural Sciences and Natural Resources. 2015; 2(2): 28-35. |
[38] | Elbannaa K, Elbadryb M, Gamal-Eldin H. Genotypic and phenotypic characterization of rhizobia that nodulate snap bean (Phaseolus vulgaris L.) in Egyptian soils. Systematic and Applied Microbiology. 2009; 32 522–530. |
[39] | Castro S, Permigiani M, Vinocur M, Fabra A. Nodulation in peanut (Arachis hypogaea L.) roots in the presence of native and inoculated rhizobia strains. Applied Soil Ecology. 1999; 13 39±44. |
[40] | Ibijbijen J, Urquaiaga S, Ismaili M, Alves B. J. R, Boddey R. M. Effect of arbuscular mycorrhizas on growth, mineral nutrition and nitrogen fixation of three varieties of common beans (Phaseolus vulgaris). New Phytol. 1996; 134: 353-360. |
[41] | Gianinazzi-Pearson V, Fardeau J. C, Asimi S, Gianinazzi S. Source of additional phosphorus absorbed from oils by vesicular-arbuscular mycorrhizal soybeans. Physiologie Végétale. 1981; 19:33-43. |
[42] | Johanssen A, Jakobsen I, Jessen E. S. Hyphal N transport by a vesicular-arbiscular mycorrhizal fungi of N applied to the soil as ammonium or nitrate. Biol. Fertil. Soils. 1994; 16: 66-70. |
[43] | El Kherbawy M, Angle J. S, Heggo A, Chaney R. L. Soil pH, rhizobia and vesicular-arbiscular mycorrhizae inoculation effects on growth and heavy metal uptake of alfalfa (Medicago sativa L.) Biol. Fertil. Soils. 1989; 8: 61-65. |
[44] | Xie Z. P, Staehelin C, Vierheilig H, Wiemken A, Jabbouri S, Broughton W. J, Vögeli-Lange R, Boller T. Rhizobial nodulation factors stimulate mycorrhizal colonization of nodulating and non nonnodulating Soybeans. Plant Physiol. 1995; 108: 1519-1525. |
[45] | Sequeira J. O, Franco A. A. Biotechnologia do solo, Fundamebtos e Perspectivas. 1988; 152: p. |
[46] | Liu A, Hamel C, Elmi A, Costa C, Ma B, Smith D. L. Concentrations of K, Ca and Mg in maize colonised by arbuscular mycorrhizal fungi under field conditions. Can. J. Soil Sci. 2002; 82(3): 271-278. |
[47] | Alves B, Robert J. R, Boddey M, Segundo U. The success of BNF in soybean in Brazil. Plant and Soil. 2003; 252: 1–9. |
[48] | Asimi S, Gianinazzi-Pearson V, Gianinazzi S. Influence of increasing soil phosphorus levels on interactions between vesicular-arbuscularmycorrhizae and Rhizobium in soybeans. Canadian Journal of Botany. 1980: 58: 2200-2205. |
[49] | Ventura MR, Castañón JIR, Pieltain MC, Flores MP. Nutritive value of forage shrubs: Bituminaria bituminosa, Rumex lunaria, Acacia salicina,Cassia sturtii and Adenocorpus foliosus. Small Ruminant Research. 2004; 52: 13–18. |