ISSN: 2375-3927
International Journal of Mathematical Analysis and Applications  
Manuscript Information
 
 
Solution Wave Equation and Parametric Structural Schematic Diagrams of Electromagnetoelastic Actuators Nano- and Microdisplacement
International Journal of Mathematical Analysis and Applications
Vol.3 , No. 4, Publication Date: Oct. 29, 2016, Page: 31-38
2887 Views Since October 29, 2016, 690 Downloads Since Oct. 29, 2016
 
 
Authors
 
[1]    

Sergey M. Afonin, Department of Intellectual Technical Systems, National Research University of Electronic Technology (MIET), Moscow, Russia.

 
Abstract
 

Solution wave equation, structural-parametric models and parametric structural schematic diagrams of electromagnetoelastic actuators are obtained, its transfer functions are bult. Effects of geometric and physical parameters of electromagnetoelastic actuators and external load on its dynamic characteristics are determined. For calculation of control systems with piezoactuators the parametric structural schematic diagrams and the transfer functions of piezoactuators are obtained.


Keywords
 

Wave Equation, Electromagnetoelastic Actuators, Deformation, Parametric Structural Schematic Diagrams, Nano- and Microdisplacement


Reference
 
[01]    

Uchino K. Piezoelectric actuator and ultrasonic motors. Boston, MA: Kluwer Academic Publisher, 1997. 347p.

[02]    

S. M. Afonin, Block diagrams of a multilayer piezoelectric motor for nano- and microdisplacements based on the transverse piezoeffect, Journal of computer and systems sciences international 54 (3) (2015), 424-439.

[03]    

S. M. Afonin, Absolute stability conditions for a system controlling the deformation of an elecromagnetoelastic transduser, Doklady mathematics 74 (3) (2006), 943-948.

[04]    

S. M. Afonin, Stability of strain control systems of nano-and microdisplacement piezotransducers, Mechanics of solids 49 (2) (2014), 196-207.

[05]    

S. M. Afonin, Structural parametric model of a piezoelectric model of a piezoelectric nanodisplacement transduser, Doklady physics 53 (3) (2008), 137-143.

[06]    

S. M. Afonin, Solution of the wave equation for the control of an elecromagnetoelastic transduser, Doklady mathematics 73 (2) (2006), 307-313.

[07]    

Physical Acoustics: Principles and Methods. Vol. 1. Part A. Methods and Devices. Ed.: W. Mason. New York: Academic Press. 1964. 515 p.

[08]    

D. Zwillinger, Handbook of Differential Equations. Boston: Academic Press. 1989. 673 p.

[09]    

S. M. Afonin, Structural-parametric model and transfer functions of electroelastic actuator for nano- and microdisplacement, in Piezoelectrics and Nanomaterials: Fundamentals, Developments and Applications. Ed. I. A. Parinov. New York: Nova Science. 2015. pp. 225-242.

[10]    

S. M. Afonin, Generalized parametric structural model of a compound elecromagnetoelastic transduser, Doklady physics 50 (2) (2005), 77-82.

[11]    

S. M. Afonin, Generalized hysteresis characteristic of a piezoelectric transducer and its harmonic linearization, Mechanics of solids 39 (6) (2004), 14-19.

[12]    

S. M. Afonin, Parametric structural diagram of a piezoelectric converter, Mechanics of solids 37 (6) (2002), 85-91.

[13]    

S. M. Afonin, Deformation, fracture, and mechanical characteristics of a compound piezoelectric transducer, Mechanics of solids 38 (6) (2003), 78-82.

[14]    

S. M. Afonin, Parametric block diagram and transfer functions of a composite piezoelectric transducer, Mechanics of solids 39 (4) (2004), 119-127.

[15]    

S. M. Afonin, Elastic compliances and mechanical and adjusting characteristics of composite piezoelectric transducers, Mechanics of solids 42 (1) (2007), 43-49.

[16]    

S. M. Afonin, Static and dynamic characteristics of a multy-layer electroelastic solid, Mechanics of solids 44 (6) (2009), 935-950.

[17]    

S. M. Afonin, Design static and dynamic characteristics of a piezoelectric nanomicrotransducers, Mechanics of solids 45 (1) (2010), 123-132.

[18]    

S. M. Afonin, Structural-parametric model of nanometer-resolution piezomotor, Russian engineering research 21 (5) (2001), 42-50.

[19]    

S. M. Afonin, Parametric structure of composite nanometric piezomotor, Russian engineering research 22 (12) (2002), 9-24.

[20]    

S. M. Afonin, Electromechanical deformation and transformation of the energy of a nano-scale piezomotor, Russian engineering research 31 (7) (2011), 638-642.

[21]    

S. M. Afonin,. Electroelasticity problems for multilayer nano- and micromotors, Russian engineering research 31 (9) (2011), 842-847.

[22]    

S. M. Afonin, Nano- and micro-scale piezomotors, Russian engineering research 32 (7-8) (2012), 519-522.

[23]    

S. M. Afonin, Dynamic characteristics of multilayer piezoelectric nano- and micromotors, Russian engineering research 35 (2) (2015), 89-93.

[24]    

S. M. Afonin, Generalized structural parametric model of an elecromagnetoelastic transduser for control system of nano- and microdisplacement: I. Solution of the wave equation for control problem of an elecromagnetoelastic transduser, Journal of computer and systems sciences international 44 (3) (2005), 399-405.

[25]    

S. M. Afonin, Generalized structural parametric model of an elecromagnetoelastic transduser for control system of nano- and microdisplacements: II. On the generalized structural parametric model of a compound elecromagnetoelastic transduser, Journal of computer and systems sciences international 44 (4), (2005), 606-612.

[26]    

S. M. Afonin, Generalized structural-parametric model of an elecromagnetoelastic converter for nano- and micrometric movement control systems: III. Transformation parametric structural circuits of an elecromagnetoelastic converter for nano- and micromovement control systems, Journal of computer and systems sciences international 45 (2) (2006), 317-325.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership