ISSN: 2375-3927
International Journal of Mathematical Analysis and Applications  
Manuscript Information
 
 
On Solution of Nonlinear Cubic Non-Homogeneous Schrodinger Equation with Limited Time Interval
International Journal of Mathematical Analysis and Applications
Vol.2 , No. 1, Publication Date: Apr. 21, 2015, Page: 9-16
1480 Views Since April 21, 2015, 1015 Downloads Since Apr. 21, 2015
 
 
Authors
 
[1]    

Sherif E. Nasr, Engineering Mathematics Department, Faculty of Engineering, Fayoum University, Fayoum, Egypt.

[2]    

H. El Zoheiry, Engineering Mathematics Department, Faculty of Engineering, Cairo University, Giza, Egypt.

 
Abstract
 

In this paper, a perturbing nonlinear cubic non-homogeneous Schrodinger equation, i∂u(t,z)/∂z+α(∂^2 u(t,z))/(∂t^2 )+ε|u(t,z) |^2 u(t,z)+iγu(t,z)=F_1 (t,z)+iF_2 (t,z), (t,z)∈(0,T) x (0,∞) is studied under limited time interval, complex initial conditions and zero Neumann conditions. The perturbation method and Picard approximation together with the eigenfunction expansion and variational parameters methods are used to introduce an approximate solution for the perturbative nonlinear case for which a power series solution is proved to exist. Using Mathematica, the solution algorithm is tested through computing the possible orders of approximations. The method of solution is illustrated through case studies and figures. Effect of time interval (T) had been studied through cases studies and figures.


Keywords
 

Nonlinear Schrodinger Equation, Perturbation, Eigen function Expansion, Mathematica, Picard Approximation


Reference
 
[01]    

Cazenave T. and Lions P., Orbital stability of standing waves for some nonlinear Schrodinger equations, Commun. Math. Phys. 85(1982) 549-561.

[02]    

Faris W.G. and Tsay W.J., Time delay in random scattering, SIAM J. on applied mathematics 54(2) (1994) 443-455.

[03]    

Bruneau C., Menza L., and Lehner T., Numerical resolution of some nonlinear Schrodinger –like equations in plasmas, Numer. Math. PDEs 15(6) (1999) 672-696.

[04]    

Abdullaev F. and Granier J., Solitons in media with random dispersive perturbations, Physica (D)134(1999) 303-315.

[05]    

Corney J.F. and Drummond P., Quantum noise in Optical fibers.II.Raman Jitter in soliton communications, J. Opt.Soc.Am. B 18(2)(2001) 153-161.

[06]    

Biswas A. and Milovic D., bright and dark solitons of generalized Schrodiner equation, Communications in nonlinear Science and Numerical Simulation, doi:10.1016/j.cnsns.2009.06.017

[07]    

Staliunas K., Vortices and dark solitons in the two-dimensional nonlinear Schrodinger equation, Chaos, Solitons and Fractals 4(1994) 1783-1796.

[08]    

Carretero R., Talley J.D., Chong C. and Malomed B.A., Multistablesolitons in the cubic-quintic discrete nonlinear Schrodinger equation, Physics letter A 216(2006) 77-89.

[09]    

Seenuvasakumaran P., Mahalingam A. and Porsezian K., dark solitons in N- coupled higher order nonlinear Schrodinger equations, Communications in Nonlinear science and Numerical simulation 13(2008) 1318-1328.

[10]    

Xing Lü, Bo Tian, Tao Xu, Ke-JieCai and Wen-Jun Liu, Analytical study of nonlinear Schrodinger equation with an arbitrary linear-time potential in quasi one dimensional Bose-Einstein condensates , Annals of Physics 323(2008) 2554-2565.

[11]    

Debussche A. and Menza L., Numerical simulation of focusing stochastic nonlinear Schrodinger equations, Physica D 162(2002) 131-154.

[12]    

Debussche A. and Menza L., Numerical resolution of stochastic focusing NLS equations, Applied mathematics letters 15(2002) 661-669.

[13]    

Wang M. and et al, various exact solutions of nonlinear Schrodinger equation with two nonlinear terms, Chaos, Solitons and Fractals 31(2007) 594-601.

[14]    

Xu L. and Zhang J., exact solutions to two higher order nonlinear Schrodinger equations, Chaos, Solitons and Fractals 31(2007) 937-942.

[15]    

Sweilam N., variational iteration method for solving cubic nonlinear Schrodinger equation, J. of computational and applied mathematics 207(2007) 155-163.

[16]    

Zhu S., exact solutions for the high order dispersive cubic- quintic nonlinear Schrodinger equation by the extended hyperbolic auxiliary equation method, Chaos, Solitons and Fractals (2006) 960-779.

[17]    

Sun J., Qi Ma Z., Hua W. and Zhao Qin M., New conservation schemes for the nonlinear Schrodinger equation, applied mathematics and computation 177(2006) 446- 451.

[18]    

Porsezian K. and Kalithasan B., Cnoidal and solitary wave solutions of the coupled higher order nonlinear Schrodinger equations in nonlinear optics, Chaos, Solitons and Fractals 31(2007) 188-196

[19]    

Sakaguchi H. and Higashiuchi T., two- dimensional dark soliton in the nonlinear Schrodinger equation, Physics letters A 39(2006) 647-651.

[20]    

Huang D., Li D.S. and Zhang H., explicit and exact traveling wave solution for the generalized derivative Schrodinger equation, Chaos, Solitons and Fractals 31(3) (2007) 586-593.

[21]    

Magdy A. El-Tawil, H. El Zoheiry and Sherif E. Nasr “Nonlinear Cubic Homogenous Schrodinger Equations with Complex Intial Conditions, Limited Time Response”, The Open Applied mathematics Journal, 4(2010) 6-17

[22]    

El-Tawil A., El-Hazmy A., Perturbative nonlinear Schrodinger equations under variable group velocity dissipation, Far East Journal math. Sciences, 27(2) (2007) 419 – 430.

[23]    

El-Tawil A., El Hazmy A., On perturbative cubic nonlinear Schrodinger equations under complex non-homogeneities and complex initial conditions, Journal Differential Equations and Nonlinear Mechanics, DOI: 10.1155/2009/395894.

[24]    

Pipes L. and Harvill L., applied mathematics for engineers and physicists, McGraw –Hill, Tokyo, 1970.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership