ISSN: 2375-3919
American Journal of Materials Research  
Manuscript Information
 
 
Contribution to the Study of Variations of Physical Properties of Pericopsis elata with Respect to Different Stages of Growth
American Journal of Materials Research
Vol.6 , No. 2, Publication Date: Jun. 15, 2019, Page: 11-20
1772 Views Since June 15, 2019, 583 Downloads Since Jun. 15, 2019
 
 
Authors
 
[1]    

Fouotsa Woutsop Christian Martial, Laboratoire de Mécanique et de Modélisation des Systèmes Physiques (Faculty of Sciences), Department of Physics, University of Dschang, Dschang, Cameroon; Laboratoire d’Ingénierie des Systèmes Industriels et de l’Environnement (IUT-FV), Bandjoun, University of Dschang, Dschang, Cameroon.

[2]    

Foadieng Emmanuel, Laboratoire de Mécanique et de Modélisation des Systèmes Physiques (Faculty of Sciences), Department of Physics, University of Dschang, Dschang, Cameroon; Higher Technical Teachers' Training College, Kumba, University of BUEA, Cameroon (HTTTC), Kumba, Department of Civil Engineering and Forestry Techniques, University of Buea, Buea, Cameroon; Laboratoire d’Ingénierie des Systèmes Industriels et de l’Environnement (IUT-FV), Bandjoun, University of Dschang, Dschang, Cameroon.

[3]    

Mtopi Fotso Blaise Eugene, Laboratoire d’Ingénierie des Systèmes Industriels et de l’Environnement (IUT-FV), Bandjoun, University of Dschang, Dschang, Cameroon.

[4]    

Azeufack Ulrich Gael, Laboratoire de Mécanique et de Modélisation des Systèmes Physiques (Faculty of Sciences), Department of Physics, University of Dschang, Dschang, Cameroon; Laboratoire d’Ingénierie des Systèmes Industriels et de l’Environnement (IUT-FV), Bandjoun, University of Dschang, Dschang, Cameroon.

[5]    

Talla Pierre Kisito, Laboratoire de Mécanique et de Modélisation des Systèmes Physiques (Faculty of Sciences), Department of Physics, University of Dschang, Dschang, Cameroon.

[6]    

Fogue Medard, Laboratoire d’Ingénierie des Systèmes Industriels et de l’Environnement (IUT-FV), Bandjoun, University of Dschang, Dschang, Cameroon.

 
Abstract
 

The assamela (afrormosia) of scientific name "Pericopsis Elata" (Harms), large tree of high commercial value, is an exploited species. It is considered "endangered" by IUCN (International Union for the Conservation of Nature). The operating diameter was set at 100 cm making rare the ready-to-harvest trees. Studies recommended by the Cameroonian government as part of the activities of ITTO/ CITES project, should be made to determine a new minimum operating diameter knowing that the diameter increases with age. No credible solution is provided in the scientific literature to compensate for its scarcity for exploitation. In addition, little or no information is available describing the variation of its physical properties over time in order to find the age for which its wood has good physical properties to be marketable. It is in this context that the present work has been undertaken. In this study, we adopted an experimental approach to evaluate the physical properties of this species exploited in southeastern Cameroon. Then, we studied the variations of these properties according to the age of the tree in order to propose tracks for their exploitation. Thus, tests carried out in the laboratory allowed us to estimate the relationship between the physical properties (Percentage of Heartwood, fiber Saturation Point (FSP), shrinkage, Moisture Content, Anhydrous Density, Basic density) and the Age (or Diameter). For this purpose, after three months of natural drying in the laboratory. We have evaluated the above physical properties with respect to age. This study shows that physical properties change as diameter increases, and change very fast from 65 cm diameter. From the analysis of the experimental data, we deduced that the minimum diameter of the exploitable trees must be equal to 80 cm corresponding to the age of about 200 Years. We can also point out a similarity between these results and some of the literature, according to the complex behaviour of biomaterials.


Keywords
 

Assamela, Pericopsis Elata, Physical Properties, Hygroscopy, FSP, Shrinkage, Density


Reference
 
[01]    

F. B. Boyemba (2011), “Écologie de Pericopsis elata (Harms) Van Meeuwen (Fabaceae), arbre de forêt tropicale africaine à répartition agrégée,” Thèse présentée pour l’obtention du diplôme de Doctorat/Ph. D, Université Libre de Bruxelles, Bruxelles, 181.

[02]    

IUCN [International Union for Conservation of Nature] (2012), “IUCN Red List Categories and Criteria”, Version 3.1. Second edition. Gland, Switzerland and Cambridge, UK.).

[03]    

Bourland N., Kouadio Y. L., Colinet G., Doucet J.-L. (2009-2010) “Pericopsis elata (Harms) Meeuwen in the southeastern part of Cameroon: ecological and pedological approaches to improve the management of an endangered commercial timber species”. International Forestry Review 12 (5): 111.

[04]    

Pallisco (200), Fiche essence Assamela. In P-CE-E-04. Version 01 du 20/12/2007.

[05]    

Tropix7-Cirad (2011), « Fiches techniques essences tropicales (Assamela, teck, etc.) », du 13 septembre 2011.

[06]    

Forest Products Laboratory (2010), “Wood Handbook-Wood as an engineering material,” General Technical Report FPL-GTR-190, Madison, WI: U. S. Department of Agriculture, Forest Service, Forest Products Laboratory. 508 p.

[07]    

Patrick Purser and Purser Tarleton Russell (1999), “timber measurement manual: Standard Procedures for the Measurement of Round Timber for Sale Purposes in Ireland”, Forest Service in the Department of the Marine & Natural Resources, Republic of Ireland.

[08]    

Francis CAILLIEZ (1980), « Estimation des volumes et accroissement des peuplements forestiers avec référence oartic Hère aux forks tropiceies, Etude FAO- Forêts, centre technique forestier tropical. France, vol. 1 - estirnation des volumes, 107p.

[09]    

Dilem A. (1995), « Etude de quelques propriétés du bois de Chêne vert (Quercus ilex) dans la région d’El-Hassasna (Saida-Algerie) ». Forêt méditerranéenne t. XVI, N°1, janvier 1995. Institut des sciences agronomiques, Tiaret, Algerie. 74-78p.

[10]    

W. W. Barkas and R. F. S. Hearmon (1953), “The mechanical properties of wood and their relation to moisture,” Part A. In Mechanical properties of wood and paper, Ed. R. Meredith. North. Holl. Publ. Co. Amsterdam.

[11]    

L. D. Armstrong and R. S. T. Kingston (1962), “The effect of moisture content changes on the deformation of wood under stress”, Australian J. Appl. Sci. 13 (4).

[12]    

F. F. P. Kollmann and W. A. Côte (1968), “Principles of Wood Science and Technology,” Springer-Verlag, vol. 1: Solid Wood, New York, EU.

[13]    

L. C. E. Struik (1978), “Physical Aging in Amorphous Polymers and other Materials”, Elsievier, Amsterdam, Netherlands.

[14]    

J. F. Siau (1995), “Wood: Influence of moisture on physical properties,” Virginia Poly Institute and State Univ., Blacksburg, Virginia.

[15]    

B. Elvy Shane, R. Dennis Gary and Loo-Teck Ng (1995), “Effects of coupling agent on the physical properties of wood-polymer composites", Journal of Materials Processing Technology, Elsevier, Vol. 48, Issue 1-4, P 365-371.

[16]    

Lianzhen Lin, Mariko Yoshioka, Yaoguang Yao and Nobuo Shiraishi (1995), “Physical properties of moldings from liquefied wood resins”, Journal of Applied Polymer Science, Wiley Blackwell (John Wiley & Sons), Vol. 55, Issue 11, P 1563-1571.

[17]    

Jude O. Iroh and A. Greg (1996), “Physical and chemical properties of polypyrrole–carbon fiber interphases formed by aqueous”, Journal of Applied Polymer Science, Wiley Blackwell (John Wiley & Sons), Vol. 62, Issue 10, P 1761-1769.

[18]    

W. F. Simpson and A. TenWolde (1999), “Physical properties and moisture relations of wood,” Wood handbook: wood as an engineering material. Madison, WI: USDA Forest.

[19]    

P. S. Ngohe-Ekam, P. Meukam, G. Menguy and P. Girard (2005), “Thermophysical characterization of tropical wood used as building materials: With respect to the basal density”, J. Construction and Building Materials, Vol. 20.

[20]    

Suleyman Korkut and Bilgin Guller (2008), “Physical and mechanical properties of European Hophornbeam (Ostrya carpinifolia Scop.) wood”, Bioresource Technology, Elsevier, Vol. 99, Issue 11, P 4780-4785.

[21]    

V. Glass Samuel (2010), “Moisture Relations and Physical Properties of Wood,” General Technical Report FPL–GTR–19024.

[22]    

Shabnam Sheshmani, Alireza Ashori and Yahya Hamzeh (2010), “Physical properties of polyethylene–wood fiber–clay nanocomposites”, Journal of Applied Polymer Science, Wiley Blackwell (John Wiley & Sons), Vol. 118, Issue 6, P 3255-3259.

[23]    

French Standard (1985), “NF B 51-004, Wood – Determination of moisture content,” Paris: AFNOR, 3p.

[24]    

W. W. Barkas and R. F. S. Hearmon (1953), “The mechanical properties of wood and their relation to moisture”. Part A. In Mechanical properties of wood and paper, Ed. R. Meredith. North. Holl. Publ. Co. Amsterdam.

[25]    

D. Guitard (1987), “Mécanique du matériau bois et composites,” CEPADUES-EDITIONS, Toulouse, France, I. S. S. N. 0768.2271, I. S. B. N. 2.85428. 152.7, N° Éditeur: 176, 238 p.

[26]    

J. G. Haygreen and J. L. Bowyer (1996), “Forest Products and wood science,” Third Edition. Iowa State University Press. pp. 243-247.

[27]    

Wood Handbook (1999), “Wood handbook - Wood as an engineering material,” Gen. Tech. Rep. FPL-GTR-113, Madison, WI: U. S. Department of Agriculture, Forest Service, Forest Products Laboratory. 463 p.

[28]    

G. Bortoletto Júnior and J. C Moreschi (2003), “Physical–mechanical properties and chemical composition of Pinus taeda mature wood following a forest fire”, Bioresource Technology, Elsevier, Vol. 87, Issue 3, P 231-238.

[29]    

T. A. Plekhanova, J. Keriene, A. Gailius et al. (2007), “Structural, physical and mechanical properties of modified wood–magnesia composite”, Construction and Building Materials, Elsevier, Vol. 21, Issue 9, P 1833-1838.

[30]    

Gökhan Gündüz, Süleyman Korkut and Derya Sevim Korkut (2008), “The effects of heat treatment on physical and technological properties and surface roughness of Camiyanı Black Pine (Pinus nigra Arn. subsp. pallasiana var. pallasiana) wood”, Bioresource Technology, Elsevier, Vol. 99, Issue 7, P 2275-2280.

[31]    

Irshad-ul-Haq Bhat, H. P. S. Abdul Khalil, Khairul B. Awang et al. (2010), “Effect of weathering on physical, mechanical and morphological properties of chemically modified wood materials”, Materials & Design, Elsevier, Vol. 31, Issue 9, P 4363-4368.

[32]    

S. Smulski and W. A. Côte (1984), “Penetration of wood by water - borne alkyd resin,” Wood Sci. Technol. 18: 59-75.

[33]    

A. T. Hansen (1987), “Effets du retrait du bois dans les bâtiments,” Digeste de la construction au Canada, Institut for Research in Construction, National Research Council (NRC), Canada, V. 244F, 4 p.

[34]    

C. Skaar (1988), “Wood-water relations,” Springer; cop. IX, 283 S.; 25cm: Ill. (Springer series in wood science). P 281.

[35]    

French Standard (1985), NFB51-006, Wood-Determination of shrinkage, Paris: AFNOR, 6p.

[36]    

E. McConnell (2011), “Understanding Dimensional Changes in Wood Products,” The Ohio State University Extension, Agriculture and Natural Resources F-72-11.

[37]    

A. Ylinen (1942), “The influence of latewood ratio and density on strength and elastic properties of softwood,” Acta forestalia fennica. 50: 5-30.

[38]    

J. Bodig and B. A. Jayne (1982), “Mechanics of Wood and Wood Composites,” Van Nostrand Reinhold Co., N. Y., 712pp.

[39]    

W. T. Simpson (1993), “Specific gravity, moisture content, and density relationships for wood,” FPL–GTR–76. Madison, WI: U. S.

[40]    

M. Moutee (2006), “Modélisation du comportement du bois au cours du séchage,” Thèse de doctorat (PhD). Université de Laval, Faculté de Foresterie et Géomatique, Département des Sciences du bois et de la forêt, Québec, Canada, 173p.

[41]    

French Standard (1985), “NF B 51-003, Wood – General requirements for physical and mechanical test,” Paris: AFNOR, 4p.

[42]    

French Standard (1985), “NF B 51-005, Wood-Determination of density,” Paris: AFNOR, 5p.

[43]    

Chudnoff, M. (1984) Tropical Timbers of the World. Agriculture handbook. U. S. Depart- ment of Agriculture, Forest Service.

[44]    

Reyes, G., Brown, S., Chapman, J. & Lugo, A. E. (1992), “Wood densities of tropical tree species”, General Technical Report-Southern Forest Experiment Station, USDA Forest Service, pp. i + 15 pp.

[45]    

J. K. Tangka, B. Ndongo and M. Onabid (2001), “Raffia as a structural material in the grassland region of Cameroon”, African Journal of Building Materials, Vol. 05, N°1.

[46]    

E. Foadieng (2013), “Contribution to the study of the thermomechanical and viscoelastic properties of raffia vinifera bamboo under flexural loads,” Doctoral Thesis (Ph. D), Option: Mechanics-Energetics, University of Dschang, Faculty of Sciences, Cameroon.

[47]    

Keylwerth R. (1954), “Ein Beitrag zur qualitativen Zuwashsanalyse”, Holz ais Rohund Werktoff. 77-83p., 1954

[48]    

J. Natterer, J. L. Sandoz, M. Rey et al. (2004), “Construction en bois, matériau, technologie et dimensionnement,” Traité de Génie Civil de l’École Polytechnique fédérale de Lausanne, vol 13, Deuxième édition revue et augmentée, Presses Polytechniques et Universitaires Romandes, CH-1015 Lausannes.

[49]    

A. J. Panshin and C. De Zeeuw (1980), “Textbook of wood technology,” New York, 4ed, 722p

[50]    

Meriem Fournier, (2015), “Propriétés physiques du bois”, LERFOP, GROSPARIS Tech, INRA, M2BFD – UE 938

[51]    

J. Gérard, A. Edi Kouassi, C. Daigremont et al. (998), “Synthèse sur les caractéristiques technologiques de référence des principaux bois commerciaux africains,” CIRAD-Forêt (Campus International de Baillarguet, BP 5035, 34032 Montpellier cedex 01), France, 185 p.

[52]    

Y. Benoit (2008), “Le guide des essences de bois: 74 essences, les choisir, les reconnaître, les utiliser,” Éditions Eyrolles (61, boulevard Saint-Germain, 75240 Paris cedex 05), Deuxième édition, ISBN 978-2-212- 12086-8, 145p. 7.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership