ISSN: 2375-3870
International Journal of Modern Physics and Application  
Manuscript Information
 
 
Resonant Tunneling in Fibonacci Series Multiple Quantum Wells Nanostructures
International Journal of Modern Physics and Application
Vol.2 , No. 6, Publication Date: Jan. 21, 2016, Page: 116-121
1105 Views Since January 21, 2016, 1211 Downloads Since Jan. 21, 2016
 
 
Authors
 
[1]    

Jatindranath Gain, Department of Physics, Derozio Memorial College (WBSU), Kolkata, India.

 
Abstract
 

Tunneling of electrons through the Fibonacci series multiple quantum wells (FMQWs) has been studied theoretically within unified transfer matrix approach. The characterisation of light-emitting one-dimensional photonic quasicrystals based on excitonic resonances is reported. The structures consist of GaAs/AlGaAs multiple quantum wells satisfying a Fibonacci sequence. The resulting band structure causes photons to become confined within the wells, where they occupy discrete quantized states. We have obtained an expression for the transmission coefficient of the Fibonacci series MQW nanostructures using analytical Transfer matrix method (ATMM) and found the resonance state within the photonic wells. These resonant states occur due to split pairs and coupling between degenerate states. The active photonic quasicrystals are good light emitters. The lack of periodicity in the Fibonacci series MQW results in resonant tunneling and strong emission. The resonant state describe here can be used to develop new types of optical devices, photonic- switching devices, detectors and optoelectronic devices.


Keywords
 

Multiple Quantum Wells, Transfer Matrix Method, Photonics Devices, Quantum Tunneling, Resonant Tunneling, Nanophotonics


Reference
 
[01]    

R. Tsu and L. Esaki, “Tunneling in Finite Superlattice”, Appl. Phys. Lett. 22 (1973) 562.

[02]    

S. John, “Strong localization of photons in certain disordered dielectric superlattices”, Phys. Rev. Lett. 58, 2486(1987).

[03]    

B. Freedman et al, “Wave and defect dynamics in nonlinear Photonic quasicrystals” Nature 440, 1166-1169 (2006).

[04]    

J Gain et al, “Aperidic and asymmetric Multiple Quantum Wells photonic devices: A novel transfer matrix based Model”, IJEST, Vol.6, 4954-4961(2011).

[05]    

Ralf Menzel, “Photonics”, Springer, (2006).

[06]    

Joel D. Cox et al, “Resonant tunnling in Photonic double quantum well Heterostrctures”, Nanoscale Res. Lett. (2010)5:484-488.

[07]    

C. Jannot et al, “Quasicrystalls ’’Clarendon Press, Oxford, 1994.

[08]    

S.H. Xu et al. “Photonics and nanostructures-fundamentals and applications,” 4 17–22 (2006).

[09]    

Tignon, J. et al. “Unified picture of polariton propagation in bulk GaAs Semiconductors.” Phys. Rev. Lett. 84, 3382–3385 (2000).

[10]    

M. Werchner et al, “One dimensional resonant Fibonacci quasicrystals: Noncanonical linear and canonical nonlinear effects” Optics Express, 6813 Vol. 17, No. 8 (2009).

[11]    

Cerne, J. et al. “Terahertz dynamics of excitons in GaAs/AlGaAs quantum wells.” Phys. Rev. Lett. 77, 1131–1134 (1996).

[12]    

Poddubny, A. N. et al. “Photonic quasicrystalline and aperiodic Structures.” Physica E, Volume-42, 1871–1895 (2010).

[13]    

Miller, D. A. B. “The role of optics in computing.” Nature Photon. 4, 406 (2010).

[14]    

A. Yariv, P. Yeh, “Photonics: optical electronics in modern communications.” Oxford University Press (2007).

[15]    

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission Resonances through aperiodic arrays of sub wavelength apertures,” Nature 446, 517–521 (2007).

[16]    

M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization of optics: Quasiperiodic media,” Phys. Rev. Lett. 58, 2436–2438 (1987).

[17]    

Alan L, “Crystallography and the Penrose Pattern” Physica 114A, 609- 613,(1982).

[18]    

L. D. Negro et al, “Photon band gap properties and Omnidirectional reflectance in Si/SiO2 Thue–Morse quasicrystals,” Appl. Phys. Lett. 84, 5186–5188 (2004).

[19]    

R. Merlin et al, “Quasiperiodic GaAs-AlAs Heterostructures,”Phys. Rev. Lett. 55, 1768–1770 (1985).

[20]    

E. L. Ivchenko, A. I. Nesvizhskii, and S. Jorda, “Bragg reflection of Light from quantum-well structures,” Phys. Solid State 36, 1156–1161 (1994).

[21]    

H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (fifth ed., World Scientific Publishing, Singapore (2009).

[22]    

V. V. Chaldyshev et al, “Optical lattices of InGaN quantum well excitons,” Appl. Phys. Lett. 99(25), 251103 (2011).

[23]    

R. W. Boyd, “Nonlirear Optics,” 3rd edition, Academic press, Orlando, 2007.

[24]    

Daniel J Costinett and Theodoros P Horikis, “High-order eigenstate calculation of arbitrary quantum structures,” 2009 J. Phys. A: Math. Theory. 42, 235201.

[25]    

M.O. Manasreh, “Optoelectronic Properties of Semiconductors and Superlattices,”Vol.8-Semiconductor Quantum Wells Intermixing, Edited by E. Herbert Li, Gordon and Breach Science Publishers.

[26]    

A. Hamed Majedi,”Multilayer Josephson junction as a multiple quantum well Structure”, IEEE Trans. On applied Superconductivity, Vol-17, No: 2, June (2006).

[27]    

J. Gain et al, “Transfer Matrix method for computation of electron transmission through aperiodic MQW” IEEE explore, ELECTRO-2009, doi10.1109/ELECTRO.2009.5441050.

[28]    

Jatindranath Gain et al "Fibonacci Series Multiple Quantum Wells: Big Future in Quantum Computation, “International Congress on Science and Engineering Research (ICSER), Organized by GRDS in Singapore, Nov17-18, 2015.

[29]    

A. Mayer and J.-P. Vigneron, “Transfer-matrix quantum-mechanical theory of electronic field emission from nanotips” J. Vac. Sci. Technol. B, Vol. 17, No. 2, (1999).

[30]    

M. S. Vasconcelos et al, “Photonic band gaps in quasiperiodic photonic crystals with negative refractive index” Phys. Rev. B 76, 16511(2007).

[31]    

Michael Shur, “Physics of Semiconductor Devices” Prentice Hall Inc. New Jersey, USA, (2005).





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership