ISSN: 2375-379X
Health Sciences Research  
Manuscript Information
 
 
Effects of Dietary Supplementation of Spirulina platensis on the Physiological Parameters of Clarias gariepinus After Exposure to Food Shortage Stress
Health Sciences Research
Vol.4 , No. 1, Publication Date: Jun. 13, 2017, Page: 1-5
774 Views Since June 13, 2017, 380 Downloads Since Jun. 13, 2017
 
 
Authors
 
[1]    

Mustafa Ahmed Fawzy, Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt.

[2]    

Alaa El-Din Hamed Sayed, Zoology Department, Faculty of Science, Assiut University, Assiut, Egypt.

[3]    

Nasser Sayed Abou Khalil, Medical Physiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt.

 
Abstract
 

Fishes are exposed naturally to fluctuation in the food availability along its life which adversely impact their physiological conditions. Dietary inclusionof Spirulina platensis in aquatic food formulation has a wide range of welfare and economic advantages. Hence, this study had been constructed to highlight the potential influences of food shortage on the serum metabolites and electrolyte variables of Nile catfish, and the possible modulatory impacts of graded Spirulina doses (1.25, 2.5, and 5g/Kg diet) applied for 2 months following this dietary stress. Limited dietary resource (2% of body weight) resulted in exhaustion of energy stores, impairment of renal function, and disturbance in electrolyte balance. Spirulina alleviated the depletion of energy reserves without any beneficial modulation regarding electrolyte equilibrium. Therefore, further studies are warranted to examine the most optimum dose of Spirulina and duration of exposure to achieve the most favorable impacts on both levels of metabolic and ionic balances.


Keywords
 

Nile catfish, Spirulina platenesis, Subfeeding, Energy Stores, Electrolyte


Reference
 
[01]    

Sridee, N. and S. Boonanuntanasarn, The effects of food deprivation on hematological indices and blood indicators of liver function in Oxyleotris marmorata. World Acad Sci Eng Technol, 2012. 6(5): p. 248-252.

[02]    

Gingerich, A. J., D. P. Philipp, and C. D. Suski, Effects of nutritional status on metabolic rate, exercise and recovery in a freshwater fish. J Comp Physiol B, 2010. 180(3): p. 371-84.

[03]    

Benedito-Palos, L., et al., Effect of ration size on fillet fatty acid composition, phospholipid allostasis and mRNA expression patterns of lipid regulatory genes in gilthead sea bream (Sparus aurata). Br J. Nutr, 2013. 109(7): p. 1175-87.

[04]    

Becker, E. W., Micro-algae as a source of protein. Biotechnol Adv, 2007. 25(2): p. 207-210.

[05]    

Gatlin, D. M., Dietary supplements for the health and quality of cultured fish, H. Nakagawa and M. Sato, Editors. 2007, CABI: North American Office, Cambridge, USA. p. 1-244.

[06]    

Habib, M. A., et al., A review on culture, production and use of spirulina as food for humans and feeds for humans and feeds for domestic animals and fish. 2008: Food and Agriculture Organization of the United Nations.

[07]    

Subramanian, A. and U. Balasubramanian, Effect of spirulina on growth and biological performance in common carp Catla catla and Labeo rohita (Fingerlings). Int J Res Fish Aquacc, 2014. 4(3): p. 140-144.

[08]    

Sayed, A. E. and M. A. Fawzy, Effect of dietary supplementation of Spirulina platensis on the growth and haematology of the catfish Clarias gariepinus. J Adv Biol, 2014. 5(2): p. 625-35.

[09]    

Zarrouk, C., Contribution à l’étude d’une cyanophycée. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthè se de Spirulina maxima Geilter. 1966, Paris, France: Universite´ de Paris.

[10]    

Morist, A., et al., Recovery and treatment of Spirulina platensis cells cultured in a continuous photobioreactor to be used as food. Process Biochem, 2001. 37(5): p. 535–47.

[11]    

Zeng, L. Q., et al., The effects of starvation on digestive tract function and structure in juvenile southern catfish (Silurus meridionalis Chen). Comp Biochem Physiol A Mol Integr Physiol, 2012. 162(3): p. 200-11.

[12]    

Vijayan, M., et al., Food-deprivation affects seawater acclimation in tilapia: hormonal and metabolic changes. J Exp Biol, 1996. 199(Pt 11): p. 2467-75.

[13]    

Pottinger, T. G., M. Rand-Weaver, and J. P. Sumpter, Overwinter fasting and re-feeding in rainbow trout: plasma growth hormone and cortisol levels in relation to energy mobilisation. Comp Biochem Physiol B Biochem Mol Biol, 2003. 136(3): p. 403-17.

[14]    

Abolfathi, M., et al., Effect of starvation and refeeding on digestive enzyme activities in juvenile roach, Rutilus rutilus caspicus. Comp Biochem Physiol A Mol Integr Physiol, 2012. 161(2): p. 166-73.

[15]    

Kim, J. H., et al., Changes in hematological, biochemical and non-specific immune parameters of olive flounder, Paralichthys olivaceus, following starvation. Asian-Australas J Anim Sci, 2014. 27(9): p. 1360-7.

[16]    

Laiz-Carrión, R., et al., Influence of food deprivation and high stocking density on energetic metabolism and stress response in red porgy, Pagrus pagrus L. Aquacult Int, 2012. 20(3): p. 585-99.

[17]    

Nandeesha, M. C., et al., Effect of feeding Spirulina platensis on the growth, proximate composition and organoleptic quality of common carp, Cyprinus carpio L. Aquac Res, 1998. 29(5): p. 305–12.

[18]    

Khasina, E. I., E. E. Trebukhov, and O. N. Zolotukhina, Effects of alginic acid from a brown alga Laminaria cichorioidesonthe physical activity of experimental animals. Russ J Mar Biol, 2001. 27(3): p. 188-91.

[19]    

Abdelkhalek, N. K., E. W. Ghazy, and M. M. Abdel-Daim, Pharmacodynamic interaction of Spirulina platensis and deltamethrin in freshwater fish Nile tilapia, Oreochromis niloticus: impact on lipid peroxidation and oxidative stress. Environ Sci Pollut Res Int, 2015. 22(4): p. 3023-31.

[20]    

Elwahab, Z. and N. Mohamed, Influence of fasting on functional recovery of the isolated heart exposed to ischemia reperfusion in young and aged male albino rats. Med J Cairo Univ, 2012. 8(2): p. 101-10.

[21]    

Palíková, M., et al., Selected haematological and biochemical indices of Nile tilapia (Oreochromis niloticus) reared in the environment with cyanobacterial water bloom. Acta Vet Brno, 2010. 79(9): p. 63-71.

[22]    

Polakof, S., et al., Food deprivation alters osmoregulatory and metabolic responses to salinity acclimation in gilthead sea bream Sparus auratus. J Comp Physiol B, 2006. 176(5): p. 441-52.

[23]    

Grosell, M., H. J. Hansen, and P. Rosenkilde, Cu uptake, metabolism and elimination in fed and starved European eels (Anguilla anguilla) during adaptation to water-borne Cu exposure. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol, 1998. 120(2): p. 295-305.

[24]    

Wojciak, R. W., Alterations of selected iron management parameters and activity in food-restricted female Wistar rats (animal anorexia models). Eat Weight Disord, 2014 19(1): p. 61-8.

[25]    

Payan, P., et al., Relationship between otolith and somatic growth: consequence of starvation on acid-base balance in plasma and endolymph in the rainbow trout Oncorhynchus mykiss. Fish Physiol Biochem, 1998. 19(1): p. 35-41.

[26]    

Upasani, C. D. and R. Balaraman, Effect of vitamin E, vitamin C and spirulina on the levels of membrane bound enzymes and lipids in some organs of rats exposed to lead. Indian J Pharmacol, 2001. 33(3): p. 185-91.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership