ISSN: 2375-3838
International Journal of Clinical Medicine Research  
Manuscript Information
 
 
Hepcidin Expression by THP-1cells upon Stimulation with Pam2 via TLR2/6
International Journal of Clinical Medicine Research
Vol.1 , No. 3, Publication Date: Aug. 7, 2014, Page: 72-80
1812 Views Since August 7, 2014, 686 Downloads Since Apr. 14, 2015
 
 
Authors
 
[1]    

Abdulrahaman Y., Department of Haematology, Faculty of Medical Laboratory Science, Usmanu Danfodiyo University, Sokoto, Nigeria.

[2]    

Yeldu M. H., Department of Clinical Chemistry Faculty of Medical Laboratory Science, Usmanu Danfodiyo University, Sokoto, Nigeria.

[3]    

Dallatu M. K., Department of Clinical Chemistry Faculty of Medical Laboratory Science, Usmanu Danfodiyo University, Sokoto, Nigeria.

[4]    

Erhabor O., Department of Haematology, Faculty of Medical Laboratory Science, Usmanu Danfodiyo University, Sokoto, Nigeria.

 
Abstract
 

Hepcidin plays a central role in orchestration on iron metabolism also providing a link between iron metabolism, inflammation and innate immunity. In this present study, we investigated the intrinsic ability of THP-1cell which have been differentiated to macrophages to expressed hepcidin in-vitro and involvement of pattern recognition by toll-like receptor (TLR6/2) stimulated with synthetic Pam2. This present study indicates that the binding of Pam2 and TLR2/6 directly triggers hepcidin expression in macrophages. This shows that hepcidin can be produced in the local environment of bacterial infection, therefore playing an essential role in the innate immune system. This is important because the pathogen producing the inflammation can be killed quickly via iron withdrawal, without inflammatory cytokines having to reach the liver first. These result indicates that the iron regulatory hormone and antimicrobial peptide, hepcidin, can potentially represent a host defence mechanism against intracellular pathogens and provides hope for new chemotherapies against intracellular diseases. There is need for further studies to investigate the potential development of new chemotherapies that takes into consideration the potential antimicrobial effect of the peptide, hepcidin in the management of intracellular pathogens.


Keywords
 

Hepcidin, THP-1cells, Pam2, TLR2/6


Reference
 
[01]    

Beard JL. Iron biology in immune function, muscle metabolism and neuronal functioning. Journal of Nutrition. 2001; 131(2):568S–580S.

[02]    

Andrew EA, Lucy AE, Uzi G, Suzanne C, Natasha S, Tharini AS, et al. Hepcidin regulation by innate immune and infectious stimuli. Blood.2011; 118 (15): 4129-4139.

[03]    

Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK, et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature. 2004; 432(7019):917-921.

[04]    

Sazawal S, Black RE, Ramsan M, Chwaya HM, Stoltzfus RJ, Dutta A, et al. Effects of routine prophylactic supplementation with iron and folic acid on admission to hospital and mortality in preschool children in a high malaria transmission setting: community-based, randomised, placebo-controlled trial. Lancet. 2006; 367 (9505):133-143.

[05]    

Boelaert JR, Vandecasteele SJ, Appelberg R, Gordeuk VR. The effect of the host's iron status on tuberculosis. Journal of Infectious Diseases.2007; 195 (12):1745-1753.

[06]    

McDermid JM, Jaye A, van der Loeff MFS, Todd J, Bates C, Austin SJ, et al. (2007). Elevated iron status strongly predicts mortality in West African adults with HIV infection. Journal of Acquired Immune Deficiency Syndrome. 46 (4):498-507.

[07]    

Ganz T . Iron in innate immunity: starve the invaders. Current Opinion Immunology. 2009; 21 (1): 63–67.

[08]    

Gazzinelli RT, Denkers EY. Protozoan encounters with Toll-like receptor signalling pathways implications for host parasitism. Nature Review Immunology 2006; 6 (12):895-906.

[09]    

Paul T, Mark W, Mark S .Immunobiology; Fifth Edition. New York and London: Garland Science.

[10]    

Tsuchiya S, Yamabe M, Yamacuchi Y, Kobayashi T, Konno Y, Tada K. Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). International Journal of Cancer. 1980; 26 (2):171–176.

[11]    

Molina JDT, Scadden RB, Dinarello CA, Groopman JE. Production of tumor necrosis factor by monocytic cells infected with human immunodeficiency virus. Journal Clinical. Investigation. 1989; 84 (3):733–737.

[12]    

Mathias S, Naja JJ, Fabrizia F, Lea ZL, Lalitha B, Friedrich G, et al. Lipoproteins in Staphylococcus aureus mediate inflammation by tlr2 and iron-dependent growth in vivo. Journal of Immunology. 2009; 182 (11):7110-7118.

[13]    

Eisenberg E, Levanon EY. "Human housekeeping genes are compact". TRENDS in Genetics. 2003; 19 (7): 362–365.

[14]    

Khimani AH, Mhashilkar AM, Mikulskis A, O'Malley M, Liao J, Golenko EE, et al. Housekeeping genes in cancer: normalization of array data. Biotechniques 2005;. 38(5):739-45.

[15]    

Pinto JP, Dias V, Zoller H, Porto G, Carmo H, Carvalho F, et al. Hepcidin messenger RNA expression in human lymphocytes. Immunology. 2010; 130(2):217-230.

[16]    

Kulaksiz H, Fein E, Redecker P, Stremmel W, Adler G, Cetin Y. Pancreatic beta-cells express hepcidin, an iron-uptake regulatory peptide. Journal of Endocrinology. 2008; 197(2):241-249.

[17]    

Schwarz P, Kubler JA, Strnad P, Muller K, Barth TF, Gerloff A, et al. Hepcidin is localised in gastric parietal cells, regulates acid secretion and is induced by Helicobacter pylori infection. Gut. 2008; 61(2):193-201.

[18]    

Ganz T, Nemeth E. Hepcidin and disorders of iron metabolism. Annual Review Medicine. 2011; 64(39): 347–360.

[19]    

Anderson GJ, Frazer DM, Wilkins SJ, Becker EM, Millard KN, Murphy T L, et al. Relationship between intestinal iron-transporter expression, hepatic hepcidin levels and the control of iron absorption .Biochemical Society of Transaction.2002; 30 (4):724-726.

[20]    

Roy CN, Custodio AO, deGraaf J, Schneider S, Akpan I, Montross LK, et al. An Hfe-dependent pathway mediates hyposidermia in response to lipopolysaccharide-induced inflammation in mice. Nature Genetic.2004; 36 (5):481-485.

[21]    

Nicolas G, Ghauvet C, Viatte L, Danan JL, Biggard X, Devaux I, et al. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. Journal Clinical Investigation.2002; 110 (7):1037-1044.

[22]    

Pauline L, Hongfan P, Terri G, Lei W, Ernest B. Regulation of hepcidin transcription by interleukin-1 and interleukin-6. Proceeding National Academy of Science. USA. 2005; 102 (6): 1906-1910.

[23]    

Nguyen NB, Callaghan KD, Ghio AJ, Haile DJ, Yang F . Hepcidin expression and iron transport in alveolar macrophages. American Journal Physiology Lung Cell Molecular Physiology.2006; 291(3): 417-425.

[24]    

Peyssonnaux C, Zinkernagel AS, Datta V, Lauth X, Johnson RS, Nizet V. TLR4-dependent hepcidin expression by myeloid cells in response tobacterial pathogens. Blood.2006; 107(9):3727-3732.

[25]    

Sow FB, Florence WC, Satoskar AR, Schlesinger LS, Zwilling BS, Lafuse WP. Expression and localization of hepcidin in macrophage: a role in host defense against tuberculosis. Journal of Leukocyte Biology.2007; 82 (4): 934-45.

[26]    

Pigeon C, Ilyin G, Courselaud B, Leroyer P, Turlin B, Brissot P, et al. A new mouse liver specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. Journal of Biological Chemistry. 2001; 276 (11): 7811-7819.

[27]    

Krutzik SR, Ochoa MT, Sieling PA, Uematsu S, Ng YW, Legaspi A, et al. Activation and regulation of Toll-like receptors 2 and 1 in human leprosy. Nature Medicine. 2003; 9(5): 525-532.

[28]    

Hashimoto M, Tawaratsumida K, Kariya H, Kiyohara A, Suda Y, Krikae F, et al. Not lipoteichoic acid but lipoproteins appear to be the dominant immunobiologically active compounds in Staphylococcus aureus. Journal of Immunology. 2006; 177 (5): 3162-3169.

[29]    

Jin MS, Kim SE, Heo JY, Lee ME, Kim HM, Paik SG, et al. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell. 2007; 130 (6): 1071-1082.

[30]    

Schroder NW, Morath S, Alexander C, Hamann L, Hartung T, Zahringer U, et al. Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. Journal of Biological Chemistry.2003; 278 (18): 15587-15594.

[31]    

Hashimoto M, Tawaratsumida K, Kariya H, Aoyama K, Tamura T, Suda Y. Lipoprotein is a predominant Toll-like receptor 2 ligand in Staphylococcus aureus cell wall components. International Immunology. 2006; 18 (2) : 355 - 362.

[32]    

Bubeck Wardenburg J, Williams WA, Missiakas D. Host defences against Staphylococcus aureus infection require recognition of bacterial lipoproteins. Proceeding National Academy of Science USA.2006; 103 (37): 13831-13836.

[33]    

Buwitt-Beckmann U, Heine H, Wiesmüller KH, Jung G, Brock R, Akira S, et al. Toll-like receptor 6-independent signaling by diacylated lipopeptides. European Journal Immunology. 2005; 35(1):282-289.

[34]    

Khandavilli S, Homer KA, Yuste J, Basavanna S, Mitchell T, Brown JS. Maturation of Streptococcus pneumoniae lipoproteins by a type II signal peptidase is required for ABC transporter function and full virulence. Molecular Microbiology.2008; 67 (3): 541-557.

[35]    

Baumgartner M, Karst U, Gerstel B, Loessner M, Wehland J, Jansch L. Inactivation of Lgt allows systematic characterization of lipoproteins from Listeria monocytogenes. Journal Bacteriology.2007; 189 (2):313-324.

[36]    

Wessling-Resnick M Iron Homeostasis and the Inflammatory Response. Annual Review of Nutrition. 2010; 30: 105–122.

[37]    

Mathias S, Naja JJ, Fabrizia F, Lea ZL, Lalitha B, Friedrich G, et al. Lipoproteins in Staphylococcus aureus mediate inflammation by tlr2 and iron-dependent growth in vivo. Journal of Immunology. 2009; 182 (11) : 7110 - 7118.

[38]    

Barlow PG, Li Y, Wilkinson TS, Bowdish DM, Lau YE, Cosseau C, et al. The human cationic host defense peptide LL-37 mediates contrasting effects on apoptotic pathways in different primary cells of the innate immune system. Journal of Leukocyte Biology. 2006; 80 (3):509–520.

[39]    

Lambrecht BN. "Alveolar Macrophage in the Driver's Seat." Immunity. 2006; 24 (4): 366-368.

[40]    

Wang TT, Nestel FP, Bourdeau V, Nagai Y, Wang Q, Liao J, et al. Cutting edge: 1,25-dihydroxyvitaminD3 is a direct inducer of antimicrobial peptide gene expression. Journal of Immunology. 2004; 173(5):2909-2912.

[41]    

Shin D, Yuk J, Lee S, Son J, Harding C, Kim J, et al. Mycobacterial lipoprotein activates autophagy via TLR2/1/CD14 and a functional vitamin D receptor signalling. Cell Microbiology. 2010; 12(11):1-12.

[42]    

Ping-Hui T, Atsushi M, Weizhou Z, Takashi M, Dario AAV, Michael K. Different modes of TRAF3 ubiquitination selectively activate type I interferon and pro-inflammatory cytokine expression. Nature Immunology.2010; 11(1):70-75.

[43]    

Nguyen NB, Callaghan KD, Ghio AJ, Haile DJ, Yang F. Hepcidin expression and iron transport in alveolar macrophages. American Journal Physiology Lung Cell Molecular Physiology.2006; 291(3): 417-425.

[44]    

Cole AM, Waring AJ. The role of defensins in lung biology and therapy. American Journal of Respiratory Medicine.2002; 1(4): 249–259.

[45]    

Beisswenger C, Bals R. Functions of antimicrobial peptides in host defense and immunity. Current Protein Peptide Science. 2005; 6 (3):255–264.

[46]    

Mühlradt PF, Keiss M, Meyer H, Süssmuth R, Jung G. Isolation, structure elucidation, and synthesis of a macrophage stimulatory lipopeptide from Mycoplasma fermentans acting at picomolar concentrations. Journal of Experimental Medicine.1997; 185 (11):1951-1958.

[47]    

Kemna EH, Tjalsma H, Willems HL, Swinkels DW. Hepcidin: from discovery to differential diagnosis. Haematological. 2008; 93(1): 90 – 97.

[48]    

Wooten MR, Ma Y, Yoder AR, Brown JP, Weis JH, Zachery JF. et al. Toll-Like Receptor 2 Plays a Pivotal Role in Host Defense and Inflammatory Response to Borrelia burgdorferi. Vector Bourne and Zoonotic Diseases. 2004; 2(4): 275-278.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership