ISSN: 2375-3838
International Journal of Clinical Medicine Research  
Manuscript Information
 
 
Stem Cell Therapy: Differentiation Potential of Insulin Producing Cells from Human Adipose Derived Stem Cells and Umbilical Cord MSCs
International Journal of Clinical Medicine Research
Vol.1 , No. 1, Publication Date: Jul. 7, 2014, Page: 21-25
1923 Views Since July 7, 2014, 602 Downloads Since Apr. 14, 2015
 
 
Authors
 
[1]    

Chan-Yen Kuo , Center for General Education, Chang Gung University of Science and Technology, Taoyuan, Taiwan.

[2]    

Chih-Hung Lin , Center for General Education, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.

 
Abstract
 

Diabetes mellitus is a huge burden for several countries. No matter type I or type II diabetes, the insufficient of insulin causes the dysfunction of regulating blood sugar and leads to hypoinsulinemia and life threatening ketoacidosis. To our knowledge, no effective treatment to cure diabetes and most diabetic patients still need to rely on the long-term injection of insulin. Herein, we summarized new finding and advantageous resource for regenerative medicine with the possibility to be employed in diabetes treatments. We also discuss the differentiation potentials of human adipose derived stromal cells (hADSCs) and human umbilical cord derived mesenchymal stem cells (hUCMSCs) and give rise to a new hope of treatment in the future.


Keywords
 

Type 1 Diabetes, Mesenchymal Stem Cells, Human Adipose Derived Stromal Cells (hADSCs), Human Umbilical Cord Derived Mesenchymal Stem Cells (hUCMSCs)


Reference
 
[01]    

Zimmet P, Alberti KG and Shaw J: Global and societal implications of the diabetes epidemic. Nature 414: 782-787, 2001.

[02]    

Hanley NA, Hanley KP, Miettinen PJ and Otonkoski T: Weighing up beta-cell mass in mice and humans: self-renewal, progenitors or stem cells? Mol Cell Endocrinol 288: 79-85, 2008.

[03]    

Oliver-Krasinski JM and Stoffers DA: On the origin of the beta cell. Genes Dev 22: 1998-2021, 2008.

[04]    

Ryan EA, Lakey JR, Rajotte RV, et al.: Clinical outcomes and insulin secretion after islet transplantation with the Edmonton protocol. Diabetes 50: 710-719, 2001.

[05]    

Wu LF, Wang NN, Liu YS and Wei X: Differentiation of Wharton's jelly primitive stromal cells into insulin-producing cells in comparison with bone marrow mesenchymal stem cells. Tissue Eng Part A 15: 2865-2873, 2009.

[06]    

Naujok O, Francini F, Jorns A and Lenzen S: An efficient experimental strategy for mouse embryonic stem cell differentiation and separation of a cytokeratin-19-positive population of insulin-producing cells. Cell Prolif 41: 607-624, 2008.

[07]    

Naujok O, Francini F, Picton S, Jorns A, Bailey CJ and Lenzen S: A new experimental protocol for preferential differentiation of mouse embryonic stem cells into insulin-producing cells. Cell Transplant 17: 1231-1242, 2008.

[08]    

Jiang W, Shi Y, Zhao D, et al.: In vitro derivation of functional insulin-producing cells from human embryonic stem cells. Cell Res 17: 333-344, 2007.

[09]    

Jiang J, Au M, Lu K, et al.: Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells 25: 1940-1953, 2007.

[10]    

Chang C, Niu D, Zhou H, Li F and Gong F: Mesenchymal stem cells contribute to insulin-producing cells upon microenvironmental manipulation in vitro. Transplant Proc 39: 3363-3368, 2007.

[11]    

Chang CF, Hsu KH, Chiou SH, Ho LL, Fu YS and Hung SC: Fibronectin and pellet suspension culture promote differentiation of human mesenchymal stem cells into insulin producing cells. J Biomed Mater Res A 86: 1097-1105, 2008.

[12]    

Karnieli O, Izhar-Prato Y, Bulvik S and Efrat S: Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation. Stem Cells 25: 2837-2844, 2007.

[13]    

Nagaya M, Katsuta H, Kaneto H, Bonner-Weir S and Weir GC: Adult mouse intrahepatic biliary epithelial cells induced in vitro to become insulin-producing cells. J Endocrinol 201: 37-47, 2009.

[14]    

Zhou Q, Brown J, Kanarek A, Rajagopal J and Melton DA: In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455: 627-632, 2008.

[15]    

Wolbank S, Stadler G, Peterbauer A, et al.: Telomerase immortalized human amnion- and adipose-derived mesenchymal stem cells: maintenance of differentiation and immunomodulatory characteristics. Tissue Eng Part A 15: 1843-1854, 2009.

[16]    

Uccelli A, Moretta L and Pistoia V: Mesenchymal stem cells in health and disease. Nat Rev Immunol 8: 726-736, 2008.

[17]    

Kassem M: Mesenchymal stem cells: biological characteristics and potential clinical applications. Cloning Stem Cells 6: 369-374, 2004.

[18]    

Fink T, Abildtrup L, Fogd K, et al.: Induction of adipocyte-like phenotype in human mesenchymal stem cells by hypoxia. Stem Cells 22: 1346-1355, 2004.

[19]    

Kassem M, Kristiansen M and Abdallah BM: Mesenchymal stem cells: cell biology and potential use in therapy. Basic Clin Pharmacol Toxicol 95: 209-214, 2004.

[20]    

Liu M and Han ZC: Mesenchymal stem cells: biology and clinical potential in type 1 diabetes therapy. J Cell Mol Med 12: 1155-1168, 2008.

[21]    

Mitchell JB, McIntosh K, Zvonic S, et al.: Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 24: 376-385, 2006.

[22]    

Zuk PA, Zhu M, Ashjian P, et al.: Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13: 4279-4295, 2002.

[23]    

Zuk PA, Zhu M, Mizuno H, et al.: Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7: 211-228, 2001.

[24]    

Chao KC, Chao KF, Fu YS and Liu SH: Islet-like clusters derived from mesenchymal stem cells in Wharton's Jelly of the human umbilical cord for transplantation to control type 1 diabetes. PLoS One 3: e1451, 2008.

[25]    

Troyer DL and Weiss ML: Wharton's jelly-derived cells are a primitive stromal cell population. Stem Cells 26: 591-599, 2008.

[26]    

Wang HS, Hung SC, Peng ST, et al.: Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem Cells 22: 1330-1337, 2004.

[27]    

Strem BM, Hicok KC, Zhu M, et al.: Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med 54: 132-141, 2005.

[28]    

Timper K, Seboek D, Eberhardt M, et al.: Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem Biophys Res Commun 341: 1135-1140, 2006.

[29]    

Can A and Karahuseyinoglu S: Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem Cells 25: 2886-2895, 2007.

[30]    

Karahuseyinoglu S, Cinar O, Kilic E, et al.: Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells 25: 319-331, 2007.

[31]    

Fu YS, Cheng YC, Lin MY, et al.: Conversion of human umbilical cord mesenchymal stem cells in Wharton's jelly to dopaminergic neurons in vitro: potential therapeutic application for Parkinsonism. Stem Cells 24: 115-124, 2006.

[32]    

Ma L, Feng XY, Cui BL, et al.: Human umbilical cord Wharton's Jelly-derived mesenchymal stem cells differentiation into nerve-like cells. Chin Med J (Engl) 118: 1987-1993, 2005.

[33]    

Weiss ML, Anderson C, Medicetty S, et al.: Immune properties of human umbilical cord Wharton's jelly-derived cells. Stem Cells 26: 2865-2874, 2008.

[34]    

Murtaugh LC: Pancreas and beta-cell development: from the actual to the possible. Development 134: 427-438, 2007.

[35]    

Schwitzgebel VM, Scheel DW, Conners JR, et al.: Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development 127: 3533-3542, 2000.

[36]    

Gradwohl G, Dierich A, LeMeur M and Guillemot F: neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci U S A 97: 1607-1611, 2000.

[37]    

Apelqvist A, Li H, Sommer L, et al.: Notch signalling controls pancreatic cell differentiation. Nature 400: 877-881, 1999.

[38]    

Huang HP, Liu M, El-Hodiri HM, Chu K, Jamrich M and Tsai MJ: Regulation of the pancreatic islet-specific gene BETA2 (neuroD) by neurogenin 3. Mol Cell Biol 20: 3292-3307, 2000.

[39]    

Mellitzer G, Bonne S, Luco RF, et al.: IA1 is NGN3-dependent and essential for differentiation of the endocrine pancreas. EMBO J 25: 1344-1352, 2006.

[40]    

Smith SB, Watada H and German MS: Neurogenin3 activates the islet differentiation program while repressing its own expression. Mol Endocrinol 18: 142-149, 2004.

[41]    

Sosa-Pineda B, Chowdhury K, Torres M, Oliver G and Gruss P: The Pax4 gene is essential for differentiation of insulin-producing beta cells in the mammalian pancreas. Nature 386: 399-402, 1997.

[42]    

Sussel L, Kalamaras J, Hartigan-O'Connor DJ, et al.: Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic beta cells. Development 125: 2213-2221, 1998.

[43]    

Gasa R, Mrejen C, Leachman N, et al.: Proendocrine genes coordinate the pancreatic islet differentiation program in vitro. Proc Natl Acad Sci U S A 101: 13245-13250, 2004.

[44]    

Heremans Y, Van De Casteele M, in't Veld P, et al.: Recapitulation of embryonic neuroendocrine differentiation in adult human pancreatic duct cells expressing neurogenin 3. J Cell Biol 159: 303-312, 2002.

[45]    

Davani B, Ikonomou L, Raaka BM, et al.: Human islet-derived precursor cells are mesenchymal stromal cells that differentiate and mature to hormone-expressing cells in vivo. Stem Cells 25: 3215-3222, 2007.

[46]    

Gao F, Wu DQ, Hu YH, et al.: In vitro cultivation of islet-like cell clusters from human umbilical cord blood-derived mesenchymal stem cells. Transl Res 151: 293-302, 2008.

[47]    

Chen C, Zhang Y, Sheng X, Huang C and Zang YQ: Differentiation of embryonic stem cells towards pancreatic progenitor cells and their transplantation into streptozotocin-induced diabetic mice. Cell Biol Int 32: 456-461, 2008.

[48]    

Mao GH, Chen GA, Bai HY, Song TR and Wang YX: The reversal of hyperglycaemia in diabetic mice using PLGA scaffolds seeded with islet-like cells derived from human embryonic stem cells. Biomaterials 30: 1706-1714, 2009.

[49]    

Ma W, Tavakoli T, Derby E, Serebryakova Y, Rao MS and Mattson MP: Cell-extracellular matrix interactions regulate neural differentiation of human embryonic stem cells. BMC Dev Biol 8: 90, 2008.

[50]    

Ho M, Yu D, Davidsion MC and Silva GA: Comparison of standard surface chemistries for culturing mesenchymal stem cells prior to neural differentiation. Biomaterials 27: 4333-4339, 2006.

[51]    

Qian L and Saltzman WM: Improving the expansion and neuronal differentiation of mesenchymal stem cells through culture surface modification. Biomaterials 25: 1331-1337, 2004.

[52]    

Gao F, Wu DQ, Hu YH and Jin GX: Extracellular matrix gel is necessary for in vitro cultivation of insulin producing cells from human umbilical cord blood derived mesenchymal stem cells. Chin Med J (Engl) 121: 811-818, 2008.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership