Vol.7 , No. 1, Publication Date: Apr. 23, 2020, Page: 1-7
[1] | Jessica Sepulveda-Rivera, Institute of Chemistry, Faculty of Exact and Natural Sciences, University of Antioquia, Medellin, Colombia. |
[2] | Maria del Pilar Jimenez Alzate, Department of Microbiology and Parasitology, Faculty of Medicine, University of Antioquia, Medellin, Colombia. |
[3] | Carlos Pelaez Jaramillo, Institute of Chemistry, Faculty of Exact and Natural Sciences, University of Antioquia, Medellin, Colombia. |
[4] | Pedronel Araque Marin, School of Life Sciences, EIA University (Escuela de Ingenieria de Antioquia), Envigado, Colombia. |
The species complex Fusarium oxysporum (Hypocreales: Nectriaceae) includes plant pathogens of agronomic importance and opportunistic animal and human pathogens. Considering this trans-kingdom capacity, in the present work, we evaluated the virulence of the conidia and the biological activity of lipid extracts from two isolates (environmental and clinical) of F. oxysporum. This evaluation was performed on larvae of Galleria mellonella model, injecting conidia of both isolates via hemocoel in concentrations of 1×104, 1×105, 1×106 and 1×107 conidia/mL. The extracts were characterized by GC and UHPLC-MS and evaluated on G. mellonella in concentrations of 1×102, 1×103 and 1×104 μg/mL. Greater mortality was observed with conidia of environmental isolate than with those of clinical isolate, although with both isolates were observed extra cuticular growth of mycelium in dead caterpillars and colonies of F. oxysporum were recovered from them. It was also found that the lipid extract obtained with methanol from environmental isolate caused prolonged melanization and larval mortality. The lipidomic characterization showed significant differences between the extracts in the composition of phospholipids and their index of unsaturation, finding a greater number of phospholipid species and a higher unsaturation index for the clinical isolate than for the environmental isolate. Co-stimulus of methanol lipid extract and conidia of the environmental isolate was also evaluated and mortality of the whole larvae was obtained, which suggests a synergic effect between lipids and conidia.
Keywords
Pathogenesis, Trans-kingdom Pathogen, Virulence, Lipidomic
Reference
[01] | Leslie, J. F., Summerell, B. A. The Fusarium Laboratory Manual, USA, Blackwell Publishing. (2006). |
[02] | Ma, L., Geiser, D. M., Proctor, R. H., Rooney, A. P., Donnell, K. O., Trail, F., Gardiner, D. M., Manners, J. M., Kazan, K. Fusarium Pathogenomics. Annu. Rev. Microbiol. (2013). 67, 399–416. https://doi.org/10.1146/annurev-micro-092412-155650. |
[03] | Murray, P. R., Rosenthal, K. S., Pfaller, M. A., 2013. Microbiología Médica. España, 7ma Ed. Saunders, Elselvier Inc. (2013). |
[04] | Castro López, N., Casas, C., Sopo, L., Rojas, A., Portillo, P. Del, Cepero de García, C., Restrepo, S. Fusarium species detected in onychomycosis in Colombia. Mycoses. (2008). 52, 350–356. https://doi.org/10.1111/j.1439-0507.2008. 01619.x. |
[05] | Álvarez, F. J., Douglas, L. M., Konopka, J. B. Sterol-Rich Plasma Membrane Domains in Fungi. Eukaryot. Cell (2007) 6, 755–763. https://doi.org/10.1128/EC.00008-07. |
[06] | Rittershaus, P. C., Kechichian, T. B., Allegood, J. C., Jr, A. H. M., Hennig, M., Luberto, C., Poeta, M. Del. Glucosylceramide synthase is an essential regulator of pathogenicity of Cryptococcus neoformans. J. Clin. Invest. (2006). 116, 1651–1659. https://doi.org/10.1172/JCI27890DS1 |
[07] | Rodrigues, M. L., Shi, L., Barreto-bergter, E., Nimrichter, L., Farias, S. E., Rodrigues, E. G., Travassos, L. R., Nosanchuk, J. D. Monoclonal Antibody to Fungal Glucosylceramide Protects Mice against Lethal Cryptococcus neoformans Infection. Clin. Vaccine Immunol. (2007). 14, 1372–1376. https://doi.org/10.1128/CVI. 00202-07. |
[08] | Singh, A., Wang, H., Silva, L. C., Na, C., Prieto, M., Futerman, A. H., Luberto, C., Del Poeta, M. Methylation of glycosylated sphingolipid modulates membrane lipid topography and pathogenicity of Cryptococcus neoformans. Cell Microbiol. (2012). 14, 500–516. https://doi.org/10.1111/j.1462-5822.2011.01735.x. Methylation. |
[09] | Guimarães, L. L., Toledo, M. S., Ferreira, F. A. S., Straus, A. H., Takahashi, H. K. Structural diversity and biological significance of glycosphingolipids in pathogenic and opportunistic fungi. Front. Cell. Infect. Microbiol. (2014). 4, 1–8. https://doi.org/10.3389/fcimb.2014.00138. |
[10] | Muñoz Gómez, A. Estudio de la interacción molecular huésped-patógeno utilizando el modelo insecto-hongo Galleria mellonella- Fusarium oxysporum, mediante la caracterización de genes, proteínas y péptidos de defensa provenientes de la respuesta humoral innata y del ataque. (2015). |
[11] | van Diepeningen, A. D., de Hoog, G. S. Challenges in Fusarium, a Trans-Kingdom Pathogen. Mycopathologia (2016). 181, 161–163. https://doi.org/10.1007/s11046-016-9993-7. |
[12] | Raad, I., Tarrand, J., Hanna, H., Janssen, E., Boktour, M., Bodey, G., Mardani, M., Hachem, R., Kontoyiannis, D., Whimbey, E. Environmental sources of Fusarium infection. Infect. Control Hosp. Epidemiol. (2002), 23, 532–537. https://doi.org/10.1086/502102. |
[13] | Dixon, D. M., Salkin, I. R. A. F., Duncan, R. A., Hurd, N. J., Haines, J. H., Kemna, M. E., Coles, F. B. Isolation and Characterization of Sporothrix schenckii from Clinical and Environmental Sources Associated with the Largest U. S. Epidemic of Sporotrichosis. J. Clin. Microbiol. (1991). 29, 1106–1113. |
[14] | Debeaupuis, J., Sarfati, J., Chazalet, V., Latgé, J. -P. Genetic Diversity among Clinical and Environmental Isolates of Aspergillus fumigatus. Infect. Immun. (1997). 65, 3080–3085. |
[15] | Pujol, I., Guarro, J., Sala, J. In-vitro antifungal susceptibility of clinical and environmental Fusarium spp. strains. J. Antimicrob. Chemother. (1997). 39, 163–167. https://doi.org/10.1093/jac/39.2.163 |
[16] | Rosa, P. D., Heidrich, D., Corrêa, C., Lúcia, M., Vettorato, G., Fuentefria, A. M., Goldani, L. Z., 2017. Genetic diversity and antifungal susceptibility of Fusarium isolates in onychomycosis. Mycoses (2017). 27, 616–622. https://doi.org/10.1111/myc.12638. |
[17] | de la Torre-Hernández, M. E., Sánchez-Rangel, D., Galeana-sánchez, E., Plasencia-de la Parra, J. Fumonisinas –Síntesis y función en la interacción Fusarium verticillioides-maíz. TIP Rev. Espec. en Ciencias Químico-Biológicas. (2014). 17, 77–91. https://doi.org/10.1016/S1405-888X(14)70321-3. |
[18] | Bin-umer, M. A., Mclaughlin, J. E., Basu, D., Mccormick, S., Tumer, N. E. Trichothecene Mycotoxins Inhibit Mitochondrial Translation—Implication for the Mechanism of Toxicity. Toxins (Basel). (2011). 3, 1484–1501. https://doi.org/10.3390/toxins3121484. |
[19] | Fuguet, R., Théraud, M., Vey, A. Production in vitro of toxic macromolecules by strains of Beauveria bassiana, and purification of a chitosanase-like protein secreted by a melanizing isolate. Comp. Biochem. Physiol. (2004). 138, 149–161. https://doi.org/10.1016/j.cca.2004.06.009. |
[20] | Liu, G. Y., Nizet, V. Color me bad: microbial pigments as virulence factors. Trends Microbiol. (2009). 17, 406–413. https://doi.org/10.1016/j.tim.2009.06.006.Color |
[21] | Longo, L. V. G., Nakayasu, E. S., Gazos-lopes, F., Vallejo, M. C. Characterization of Cell Wall Lipids from the Pathogenic Phase of Paracoccidioides brasiliensis Cultivated in the Presence or Absence of Human Plasma. PLoS One. (2013). 8, 1–12. https://doi.org/10.1371/journal.pone.0063372. |
[22] | Tagliari, L., Toledo, M. S., Lacerda, T. G., Suzuki, E., Straus, A. H., Takahashi, H. K. Membrane microdomain components of Histoplasma capsulatum yeast forms, and their role in alveolar macrophage infectivity. Biochim. Biophys. Acta (2012). 1818, 458–466. https://doi.org/10.1016/j.bbamem.2011.12.008. |
[23] | de Jong, C. F., Laxalt, A. M., Bargmann, B. O. R., Wit, P. J. G. M. De, Joosten, M. H. A. J., Munnik, T. Phosphatidic acid accumulation is an early response in the Cf-4 / Avr4 interaction. Plant J. (2004). 39, 1–12. https://doi.org/10.1111/j.1365-313X.2004.02110.x. |
[24] | Holic, R., Šimová, Z., Ashlin, T., Pevala, V., Poloncová, K., Tahotná, D., Kutejová, E., Cockcroft, S., Griac, P. Phosphatidylinositol binding of Saccharomyces cerevisiae Pdr16p represents an essential feature of this lipid transfer protein to provide protection against azole antifungals. Biochim. Biophys. Acta. (2014). 1841, 1483–1490. https://doi.org/10.1016/j.bbalip.2014.07.014. |