Vol.5 , No. 4, Publication Date: Jun. 1, 2018, Page: 58-63
[1] | Serigne Omar Sarr, Faculté de Médecine et de Pharmacie, Université Cheikh Anta DIOP, Dakar, Sénégal. |
[2] | Abdoulaye Gassama, Faculté des Science et Technologies, Université Assane Seck, Ziguinchor, Sénégal. |
[3] | Françoise Manga, Faculté de Médecine et de Pharmacie, Université Cheikh Anta DIOP, Dakar, Sénégal. |
[4] | Fabienne Grellepois, Institut de Chimie Moléculaire de Reims, Université de Reims, Reims, France. |
[5] | Catherine Lavaud, Institut de Chimie Moléculaire de Reims, Université de Reims, Reims, France. |
A peptide coupling reaction between L-phenylalanine (L-DOPA) and cinnamic acids derivatives has been successfully employed for the synthesis of a set of small molecules derived from trans (-) clovamide. The antioxidant activity of these derivative molecules is reported. The antioxydant and antiradical activity were determined using DPPH (2-2-Diphenyl picrylhydrazyl) radical. The molecules which exhibit interesting antioxidant activity were: compound 5 (IC50 =3.46±0.034µg/ml); compound 6 (IC50 =3.04±0.01 µg/ml); compound 7 (IC50 =4.23±0.02 µg/ml); compound 8 (IC50 =5.1±0.061 µg/ml); compound 9 (IC50 =1.55±0.17 µg/ml); compound 10 (IC50 =6.02±0.07 µg/ml) and compound 13 (IC50 =2.49±0.06 µg/ml). These molecules contain polyphenols wich are generally very good antioxidants. Thus, this study showed that compound 9 with an IC50 of 1.55 µg/ml has antioxidant activity close to that of quercetin (IC50 = 1.20µg/ml), a well known antioxidant compound.
Keywords
Antioxidant, Antiradical, trans-(-)-Clovamide, DPPH
Reference
[01] | Dluya T., Daniel D., Yusuf U (2017). In vitro Antioxidant Activity and Phytochemical Evaluation of Five Medicinal Plants Extract. The Pharmaceutical and Chemical Journal, 2017, 4 (5): 73-82. |
[02] | Labiad M. H., Harhar H., Ghanimi A., Tabyaoui M (2017). Phytochemical Screening and Antioxidant Activity of Moroccan Thymus satureioïdes Extracts. JMES, 2017, 8 (6), 2132-2139. |
[03] | Mates J. M., Sanchez-Jimenez F. M. (2000). Role of reactive oxygen species in apoptosis: implications for cancer therapy. Int. J. Biochem. Cell. Biol. 32: 157-170. DOI. http://dx.doi.org/10.1016/S1357-2725(99)00088-6. |
[04] | Sarr S. O., Perrotey S., Fall I., Ennahar S., Diop Y. MB., Candolfi E., Marchioni E. (2011). Icacina senegalensis A. Juss. (Icacinaceae), traditionally used for the treatment of malaria inhibits in vitro Plasmodium falciparum growth without host cell toxicity. Malaria J. 2011, 10: 85. DOI. http://dx.doi.org/10.1186/1475-2875-10-85. |
[05] | Kagan IA, Goff BM, Flythe MD. Soluble Phenolic Compounds in Different Cultivars of Red Clover and Alfalfa, and their Implication for Protection against Proteolysis and Ammonia Production in Ruminants (2015). Nat Prod Commun. 10 (7): 1263-7. |
[06] | Lim H-W, Jeong-InPark, S. V. M., Ju-Young P., Byung-W. K., Sae B. J., Yun Y-S, Park E-J, Yoon S-H, Choi D-K. Anti-neuroinflammatory effects of DPTP, a novel synthetic clovamide derivative in in vitro and in vivo model of neuroinflammation (2015). Brain Research Bulletin 112, 25-34. |
[07] | Ley J. P., and Bertram H-B. Synthesis of Lipophilic Clovamide Derivatives and Their Antioxidative Potential against Lipid Peroxidation. (2003) J. Agric. Food Chem., 51 (16), 4596–4602, DOI: 10.1021/jf034286d. |
[08] | Manga A., Gassama A., Sy G. Y., Bassène E. Lavaud C. (2013). Structural determination of news flavones C-glycosides and trans (S, E)-(-) clovamide isolated from Icacina senegalensis Juss leaves. J. Soc. Ouest-Afr. 035: 15-27. |
[09] | Grellepois F. (2013). Enantiopure Trifluoromethylated β3,3-Amino Acids: Synthesis by asymmetric reformatsky reaction with stable analogues of Trifluoromethyl N-tert-Butanesulfinylketoimines and Incorporation into α/β-Peptides. J. Org. Chem. 78: 1127-1137. DOI. https://doi.org/10.1021/jo302549v. |
[10] | Jad YE., Acosta GA., Khattab SN., de la Torre BG., Thavendran Govender T, Kruger HG, El-Faham A., and Albericio F. (2015). Peptide synthesis beyond DMF: THF and ACN as excellent and friendlier alternatives. Org. Biomol. Chem., 13: 2393-2398. DOI. https://doi.org/ 0.1039/C4OB02046D. |
[11] | Sarr S. O., Fall A. D., Gueye R., Diop A., Diatta K., Diop N., Ndiaye B., Diop Y. M. (2015a). Etude de l’activité antioxydante des extraits de feuilles de Vitex doniana (Verbenaceae). Int. J. Biol. Chem. Sc.; 9 (3): 1263-1269. DOI: http://dx.doi.org/10.4314/ijbcs.v9i6.13. |
[12] | Sarr SO, Fall AD, Guèye R, Diop A, Sène B, Diatta K, Ndiaye B, Diop YM (2015b). Evaluation de l’activité antioxydante des extraits de Aphania Senegalensis (sapindaceae) et de Saba senegalensis (Apocynaceae). Int. J. Biol. Chem. Sc., 9 (6), 2676-2684. DOI. https://doi.org/10.4314/ijbcs.v9i6.13. |
[13] | Sall C, Seck M, Faye B., Dioum M. D., Seck I., Guèye P. M., Ndoye S. F., Guèye R. S., Fall D., Fall M., Dièye T. N. (2016). Etude in vitro de l’effet antifalcémiant des globules rouges et de l’activité antioxydante d’extraits de la poudre de racine de Maytenus Senegalensis Lam (Celestracae). Intern. J. Biol. Chem. Sc., 10 (3), 1017-1026. DOI. http://dx.doi.org/10.4314/ijbcs.v10i3.9. |
[14] | Wangia, C. O., Orwa, J. A., Muregi, F. W., Kareru, P. G., Kipyegon, C. & Kibet, J. (2016), ‘Comparative anti-oxidant activity of aqueous and organic extracts from Kenyan Ruellia lineari-bracteolata and Ruellia bignoniiflora’, European Journal of Medicinal Plants 17 (11), 1-7. https://doi.org/10.9734/EJMP/2016/29853. |
[15] | James DB, Sheneni VD, Kadejo OA, Yatai, KB. (2014). Phytochemical screening and in vitro antioxidant activities in different solvent extracts of Vitex doniana leaves, stem bark and root bark. Am. J. Biomed & Life Sciences, 2 (1): 22-27. DOI. https://doi.org/10.11648/j.ajbls.20140201.14. |