ISSN: 2375-3765
American Journal of Chemistry and Application  
Manuscript Information
Antibacterial Assay of Two Synthesized Dithiocarbamate Ligands
American Journal of Chemistry and Application
Vol.5 , No. 4, Publication Date: May 31, 2018, Page: 51-57
649 Views Since May 31, 2018, 294 Downloads Since May 31, 2018

Gloria Ihuoma Ndukwe, Department of Chemistry, Rivers State University, Nkpolu-Oroworukwo, Port-Harcourt, Nigeria.


James Udochukwu Nzeneri, Department of Chemistry, Rivers State University, Nkpolu-Oroworukwo, Port-Harcourt, Nigeria.


Ovire Julius Abayeh, Department of Chemistry, University of Port-Harcourt, Choba, Port-Harcourt, Nigeria.


Dithiocarbamates are compounds that bind strongly and selectively to so many metal ions. They readily form chelates with all transition metal ions through their two donor sulphur atoms. In this study, two derivatives of dithiocarbamate (sodium phenyldithiocarbamate and sodium cyclohexyldithiocarbamate) were studied to determine their effectiveness in the treatment of diseases caused by the tested organisms. Antibacterial activities of these ligands were carried out using the disc diffusion method. Antibacterial activities were exhibited by sodium phenyldithiocarbamate and sodium cyclohexyldithiocarbamate, against Bacillus subtilis, Bacillus cereus, Pseudomonas aeruginosa, Proteus mirabilis, and Salmonella typhi. Minimum inhibitory concentration was 15 mg/ml for sodium phenyldithiocarbamate with zone of inhibition range of 8.5 mm - 19 mm and 30 mg/ml for sodium cyclohexyldithiocarbamate with zone of inhibition range of 7.7 mm - 16.3 mm. The ligands can compete favourably with gentamycin which served as the reference drug.


Sodium Phenyldithiocarbamate, Sodium Cyclohexyldithiocarbamate, Antibacterial Activity, Dithiocarbamate


Hogarth, G., Rainford, B., Ebony, J. C. R. C. R., Kabir, S. E., Richards, I., Wilton-Ely, J. D. E. T. and Zhang, Q. (2009). Functionalised dithiocarbamate complexes: Synthesis and molecular structures of 2-diethylaminoethyl and 3-diethylaminopropyl dithiocarbamates [M{S2CN(CH2CH2Net2)(2)}(n)] (n= 2, M= Ni, Cu, Zn, Pd, n= 3, M= Co). Inorg. Chim. Acta, 362 (4), 2020-2026.


Rajab, A. and Sami A. Z. (2015). Removal efficiency of Pb, Cd, Cu and Zn from polluted water using dithiocarbamate ligands. Journal of Taibah University for Science, 11, 57–65.


Li, Z. (2014). Synthesis of a carbamide-based dithiocarbamate chelator for the removal of heavy metal ions from aqueous solutions, J. Ind. Eng. Chem. 20, 586–590.


Nabipour, H. (2011). Synthesis of a new dithiocarbamate cobalt complex and its nanoparticles with the study of their biological properties. Int. J. Nano. Dim 1 (3), 225-232.


Nabipour, H., Shahriar, G., Shahriar A and Zahra S. A (2010). Synthesis of a New Dithiocarbamate Compound and Study of its Biological Properties, Org. Chem. J. 2, 75-80.


Dawood, Z. F., Mohammed, T. J. & Sharif, M. R. (2009). New nickel (II) complexes with benzilbis (semicarbazone) and dithiocarbamate ligands. Proceedings of the 5th Scientific Conference, College of Veterinary Medicine, University of Mosul. Journal of Veterinary Sciences, 23, 135-141.


Daniel, K. G., Chen, D., Orlu, S., Cui, Q. C., Miller F. R and Dou, Q. P. (2009). Clioquinol and pyrrolidine dithiocarbamate complex with copper to form proteasome inhibitors and apoptosis inducers in human breast cancer cells. Breast Cancer Res. 7 (6), 897-908.


Sarwar, M., Ahmad, S., Ahmad, S., Ali, S and Awan, S. A. (2007). Copper(II) complexes of pyrrolidine dithiocarbamate. Trans Met Chem, 32 (2), 199-203.


Kanchi, S., Singh, P., and Bisetty, K. (2014). Dithiocarbamates as hazardous remediation agent: a critical review on progress in environmental chemistry for inorganic species studies of 20th century, Arab. J. Chem. 7, 11–25.


Leka, Z. B., Leovac, V. M., Lukic, S., Sabo, T. J., Trifunovic, S. R. and Katalin, M. S. (2006). Synthesis and physico-chemical characterization of new dithiocarbamate ligand and its complexes with copper(II), nickel(II) and Palladium(II). J. Therm Anal and Cal, 83 (3), 687-691.


Ekennia, A. C., Onwudiwe, D. C., Cyril, U. & Eno, E. E. (2015). Mixed Ligand Complexes of N- Methyl-N-phenyl Dithiocarbamate: Synthesis, Characterisation, Antifungal Activity, and Solvent Extraction Studies of the Ligand. Hindawi Publishing Corporation Bioinorganic Chemistry and Applications, 2015 (2015), Article ID 913424,


Beer, P. D., Berry, N., Drew, M. G. B., Fox, O. D., Padilla-Tosta, M. E and Patell, S. (2001). Self-assembled dithiocarbamate copper(II) macrocycles for electrochemical anion recognition. Chem. Commun., 4, 199-200.


Rani, P. J., Thirumaran, S. and Ciattini, S. (2015). Synthesis and characterization of Ni(II) and Zn(II) complexes of (furan-2-yl)methyl(2-(thiophen-2-yl)ethyl)dithiocarbamate (ftpedtc): X-ray structures of [Zn(ftpedtc)2(py)] and [Zn(ftpedtc)Cl(1,10-phen)], Spectrochim. Acta A: Mol. Biomol. Spectrosc, 137, 1164–1173.


Pandeya, K. B., Singh, R., Mathur, K and Singh R. P. (1986). E. S. R. spectra of mixed ligand manganese(II) dithiocarbamates. Transition Met. Chem, 11, 340.


Milacic, V., Chen, D., Giovagnini, L., Diez, A., Fregona, D and Dou, Q. P. (2008). Pyrrolidine dithiocarbamate zinc(II) and copper(II) complexes induce apoptosis in tumor cells by inhibiting the proteasomal activity. Toxicology and Applied Pharmacology, 231, 24.


Ekennia, A. C. and Odola, A. J. (2013). Synthesis, physico-chemical characterization and biocidal studies of nickel (ii) mixed-ligand complexes of alkyl dithiocarbamate and salicylaldehyde. International journal of pharmaceutical, biological and chemical sciences. 2: 21-25, accepted manuscript I. d; 2040837151.


Jayaraju, A., Musthak, A. M., Mallikarjuna, R. R. and Sreeramulu, J. (2012). Synthesis, characterization and biological evaluation of novel dithiocarbamate metal complexes. Der Pharma Chemica, 4 (3), 1191-1194.


Ekennia, A. C., Onwudiwe, D. C., Cyril, U and Eno, E. E. (2015). Mixed Ligand Complexes of N-Methyl-N-phenyl Dithiocarbamate: Synthesis, Characterisation, Antifungal Activity, and Solvent Extraction Studies of the Ligand. Hindawi Publishing Corporation Bioinorganic Chemistryand Applications, Article ID 913424,


Nzeneri, J. U., Ndukwu, G. I. and Abayeh, O. J. (2018). Synthesis and metal removal efficiency of sodium phenyldithiocarbamate and sodium cyclohexyldithiocarbamate ligands. IOSR Journal of Applied Chemistry, 11 (1), 72-82.


Ericson, H., Tunevall, U and Wick-man, K. (1960). The paper Disc Method for Determination of bacterial Sensitivity to Antibiotics: Relationship between the diameter of the zone of inhibition and the minimum inhibitory concentration Scandinavian. Journal of Clinical and laboratory investigation, 12 (4), 414–422.


Odeyemi, A. T., Adebayo, A. A. and Adeosun, O. M. (2013). Bacteriological and Physicochemical Studies on three major Dams in Ekiti State Nigeria. Journal of Environment and Earth Science, 3 (7), 2224-3216.


Prescott, E. C. and Rajnish, M. (2005). Recursive Competitive Equilibrum: The Case of Homogeneous Households. Theory of Valuation: 2nd, 357-371.


Todar’s online textbooks (2013): Nutrition and growth of bacteria. Retrieved on 21-10-2017.


Ryan, K. J. and Ray, C. G. (editors) (2004). Sherris Medical. Microbiology 4th edition, McGraw-Hill, New York, 551-552.


Krieg, P. A., Melton, D. A., Rebagliati, M. R., Maniatis, T., Zinn, K and Green, M. R. (1984). Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Research, 12 (18), 7035-7056.


Ara, K. (2007). Bacillus Minimum genome Fectory: Effective Utilization of Microbial Genone Information. Biotechnol. Applied Biocem, 46 (3), 169-178.


Ehling, M., Fricker, M and Scherer, S. (2004). Bacillus Cereus, the causative agent of an emetic type of food-borne illness. Molecular Nutrition and Food Research, 48 (7), 479-487.


Kotiranta, A and Haapasalo, M. (2000). Epidemiology and pathogenesis of Bacillus cereus infections. Microbes and Infection, 2 (2), 189-198.


Hassett, D. J. (1996). Anaerobic production of alginate restricts diffusion of oxygen. J. Bacteriol. 178 (24), 7322-7325.


Worlitzsch, D., Tarran, R and Gerd, D. (2002). Effect of reduced mucus oxygen concentration in airway Pseudomonas infection of cystic fibrosis patients. The Journal of Clinical Investigation, 56, 123-138.


Nguyen, D., Amruta, J and Francois, L. E. (2011). Active Starvation Responses Mediate Antibiotic Tolerance in Biofilms and Nutrient-Limited Bacteria. Science Volume, 334 (6058), 982-986.


Elkin, S and Geddes D. (2003). Pseudomonas Infection in Cystic Fibrosis: the battle Continues. Journal of Expert Review of Anti-Infective Therapy, 1, 609-618.


Cornelis, L. (2008). Pseudomonas: Genomics and Molecular Biology, 1st Edition., Caister Academic Press, Belgium. ISBN-13: 978-1904455196, ISBN- 10: 1904455190.


Lau, S. K. P., Woo, P. C. Y., Fung, A. M. Y., Chan, K., Woo, G. K. S. and Yuen, K. (2004). Anaerobic non-Sporulating Gram-positive bacilli bacteraemia characterized by 16S rRNA gene Sequencing. Journal of Medical Microbiology, 53, 1247-1253.


Eldere, J. V. (2003). Multicentre Surveillance of Pseudomonas Aeruginosa Susceptibility Patterns in Nosocominal Infection. Journal of Antimicrobial Chemotherapy, 51 (2), 347-352.


Esipov, S. E. and Shapiro, J. A. (1998). Kinetic Model of Proteus Mirabilis Swarn Colony Development. Journal of Mathematical Biology, 100, 23-26.


Rauprich, O., Matsushita, M., Weijer, C. J., Siegert, F., Esipov, S. E. and Shapiro, J. A. (1996). Periodic Phenomena in Proteus Mirabilis Swarm Colony Development. Journal of Bacteriology, 178 (22), 6525-6538.


Gue, M., Dupont, V., Dufour, A and Sire, O. (2001). Bacterial Swarming: A Biochemical Time-Resolved FRIR-ATR Study of Proteus Mirabilis Swam-Cell Differentiation. Journal of Biochemistry, 40 (39), 11938-11945.


Rajab, A and Sami A. Z. (2015). Removal efficiency of Pb, Cd, Cu and Zn from polluted water using dithiocarbamate ligands. Journal of Taibah University for Science, 11, 57–6.

  Join Us
  Join as Reviewer
  Join Editorial Board