ISSN: 2375-3765
American Journal of Chemistry and Application  
Manuscript Information
 
 
Hydrocarbon Distribution of a Catalytic Process - The Fischer-Tropsch Synthesis
American Journal of Chemistry and Application
Vol.5 , No. 1, Publication Date: Jan. 4, 2018, Page: 1-7
1309 Views Since January 4, 2018, 1377 Downloads Since Jan. 4, 2018
 
 
Authors
 
[1]    

Innocent Oseribho Oboh, Department of Chemical and Petroleum Engineering, University of Uyo, Uyo, Nigeria.

[2]    

Okechukwu Raphael Amaraegbu, Department of Chemical and Petroleum Engineering, University of Uyo, Uyo, Nigeria.

 
Abstract
 

Fischer–Tropsch synthesis (FTS) is a catalytic process that can be used to produce hydrocarbons, oxygenates and H2O among other products from synthesis gas, which can be derived from natural gas, coal, or biomass. It is a key component in Gas-to-Liquid (GTL), Biomass-to-Liquid (BTL) and Coal-to-Liquid (CTL) technology. The goal of the proposed work described in this Final Report was to show the distribution of the major product (hydrocarbon) with carbon number ranging from 1-37 assuming ideal kinetics of Anderson-Schulz-Flory (ASF) distribution model. The distributions of FT hydrocarbon product have best been described by Anderson-Schulz-Flory distribution model. The formation of long chain hydrocarbon product will depend on increasing chain growth probability and that the maximum selectivity of gasoline and diesel range products were 46% and 29% respectively. The selectivity of FT products as described by Anderson-Schulz–Flory (ASF) distribution model is a one parameter factor and does not correspond to the distribution for all ranges of hydrocarbon products as deviations has been reported in literatures for hydrocarbon product yield of C1, C2 and products with high molecular weight.


Keywords
 

Synthetic Gas, Hydrocarbon, Synthesis, Chain Growth, Catalysts


Reference
 
[01]    

Henricus Adrianus, Johannes Van Dijk, (2001).“A Fischer Tropsch synthesis: A mechanistic study using transient Isotopic tracing”. A thesis for a Doctor of philosophy, Department of Chemical Engineering, Technische Universiteit Eindhoven.

[02]    

Xiaojun Lu (2011), Fishcer –Tropsch Synthesis: Towards understanding. Ph.D thesis in University of Witwatersand, Johannesburg.

[03]    

Dry, M. E. (2004). “Present and future applications of the Fischer–Tropsch process”. Applied Catalysis A: General, 276 (1–2), pp. 1–3.

[04]    

Muleja, A. A., Yao, Y., Glasser, D., Hildebrandt, D. (2016). “A study of Fischer-Tropsch synthesis: Product distribution of the light hydrocarbons”. Applied Catalysis A: General, 517, pp. 217–226.

[05]    

Yang, L., Ge, X., Wan, C., F., and Li, T. (2014). “Progress and perspectives in converting biogas to transportation fuels”. Renewable and Sustainable Energy Reviews, 40, pp. 1133–1152.

[06]    

Onel, O., Niziolek, A. M. Elia, J. A., Baliban, R. C., Floudas, C. A. (2015). “Biomass and Natural Gas to Liquid Transportation Fuels and Olefins (BGTL+C2-C4): Process Synthesis and Global Optimization”. Industrial & Engineering Chemistry Research, 54 (1), pp. 359–385.

[07]    

Bouchy C, G. Hastoy, E. Guillon and J. A. Martens (2009). “Fischer-Tropsch Waxes upgrading via Hydrocracking and selective Hydro isomerization” Oil & Gas science and technology, vol 64, p. 91-112.

[08]    

Fu. T., Lv. J., Li. Z., (2014). “Effect of Carbon Porosity and Cobalt Particle Size on the Catalytic Performance of Carbon Supported Cobalt Fischer–Tropsch Catalysts”. Ind. Eng. Chem. Res. 53, 1342–50.

[09]    

Adib. H., Haghbakhsh, R., Saidi, M., Takassi, M. A., Sharifi, F., Koolivand, M., Rahimpour, M. R., and Keshtari, S. (2013). “Modeling and optimization of Fischer–Tropsch synthesis in the presence of Co (III)/Al2O3 catalyst using artificial neural networks and genetic algorithm”. J. Nat. Gas. Sci. Eng. 10, 14–24.

[10]    

Khakdaman, H. R., Sadaghiani, K., (2007). “Separation of catalyst particles and wax from effluent of a Fischer-Tropsch slurry reactor using supercritical hexane”. Chemical Engineering Research and Design, 85 (A2), 263–268.

[11]    

Bayat, M., Hamidi, M., Dehghani, Z., Rahimpour, M. R., Shariati, A., (2013). “Sorption-enhanced reaction process in Fischer–Tropsch synthesis for production of gasoline and hydrogen: Mathematical modeling”. J. Nat. Gas. Sci. Eng. 14, 225–237.

[12]    

Chiang. S-W., Chang. C-C., Shie, J-L., Chang, C-Y., Ji, DR., Tseng, J-Y., (2012). “Synthesis of alcohols and alkanes over potassium and vanadium promoted molybdenum carbides”. J. Taiwan. Inst. Chem E. 43, 918-925.

[13]    

Hemmati, M. R., Kazemeini, M., Khorasheh, F., Zarkesh, J., (2013). “Investigating the effect of calcination repetitions on the lifetime of Co/γ-Al2O3 catalysts in Fischer–Tropsch synthesis utilising the precursor's solution affinities”. J. Taiwan. Inst. Chem. E 44, 205–213.

[14]    

Feyzi, M., Khodaei, M. M., Shahmoradi, J., (2014). “Effect of sulfur on the catalytic performance of Fe–Ni/Al2O3 catalysts for light olefins production”. J. Taiwan. Inst. Chem. E, 45, 452 –460.

[15]    

Rahimpour, M. R., Jokar, S. M., Jamshidnejad, Z., (2012). “A novel slurry bubble column membrane reactor concept for Fischer–Tropsch synthesis in GTL technology”. Chem. Eng. Res. design. 90, 383–396.

[16]    

Mahluli Moyo (2012)., “Cobalt and Iron Supported on Carbon Spheres Catalysts for Fischer-Tropsch Synthesis”. A thesis for a Doctor of philosophy, University of Witwatersand, Johannesburg.

[17]    

Satya P. Chauhan and Michael J. Murphy, “Status of technology for producing Fischer-Tropsch fuel from coal and Natural Gas”. Fischer-Tropsch fuels for Turbine applications workshop Oklahoma City, Oklahoma. May 9-10, 2006.

[18]    

Steynberg, A. P., Espinoza, R. L., Jager, B., Vosloo, A. C., (1999). “High temperature Fischer–Tropsch synthesis in commercial practice”. Applied Catalysis A: General, 186 (1–2), pp. 41–54.

[19]    

Dry, M. E., (2002). “The Fischer–Tropsch process: 1950–2000”. Catalysis Today, 71 (3–4), pp. 227–241.

[20]    

Davis, B., (2005). “Fischer–Tropsch synthesis: Overview of reactor development and future potentialities”. Topics in Catalysis, 32 (3–4), pp. 143–168.

[21]    

Elbashir, N. O., Bao, B. & El-Halwagi, M. M., (2009). “An approach to the design of advanced Fischer-Tropsch reactor for operation in near-critical and supercritical phase media”. In Advances in gas processing: proceedings of the 1st annual symposium on gas processing symposium. Elsevier Amsterdam. The Netherlands, pp. 423–433.

[22]    

Mohd Zabidi (2012). “Synthesis of Nanocatalysts via Reverse Micro Emulsion Route of fischer-Tropsch Reaction”. Microemulsion, pp 215-228, Intech publisher.

[23]    

Yali Yao, Diane Hildebrandt, David Glasser and Xinying Liu (2010). “Fischer-Tropsch synthesis using H2/CO/CO2 Syngas mixture over a cobalt catalyst”. Ind. Eng. Chem. Res., 49, 11061-11066.

[24]    

John J. Marano and Jared P. Ciferno (2001). “Life-Cycle Green house-Gas Emissions Inventory for Fischer-Tropsch Fuels”, U. S. Department of Energy National Energy Technology Laboratory

[25]    

Kurt House (2006). “Fischer Tropsch Synthesis; The economic of Fischer-Tropsch”, In: DOE report on gas to liquids and coal to liquid technology & an interview with two Fischer-Tropsch Engineers, September.

[26]    

Arno De Klerk, (2011). “Fischer-Tropsch Refining; Fischer-Tropsch synthesis”. John Wiley Publisher, Weinheim, Germany pg. 73-95. ISBN: 978-3-527-32605-1

[27]    

Donnelly, T. J., Satterfield, C. N (1989), “Product Distributions of the Fischer-Tropsch Synthesis on Precipitated Iron Catalysts”. Appl Catal 52 (1): 93–114 59.

[28]    

Jin Hu, Fei Yu and Yongwu Lu (2012).“Application of Fischer-Tropsch Synthesis in Biomass to liquid conversion”. Catalysts, 2, pg. 303-326. ISSN: 2073-4344.

[29]    

Sinee Kraokaw (2009). “Selective Production of Higher Hydrocarbons over Cobalt Support SBA-15 Mesoporous Silica Catalysts”, Master Thesis, Kasetsart University.

[30]    

Yijun Lu and Theo Lee (2007). “Influence of the Feed Gas Composition on the Fischer – Tropsch Synthesis in Commercial Operations”. A Journal of Natural Gas Chemistry 16; p. 329-341.

[31]    

Slim Menzli, (2008). “Water Footprint of Aviation fuel synthesis by the Fischer-Tropsch process using sugar cane waste and land fill Gas as Feedstocks; master thesis at the University of central Florida, Orlando Florida.

[32]    

Ronald Martijn De Deugd (2004). “Fischer synthesis revisited; efficiency and selectivity Benefits from imposing temporal and/or spatial structure in the reactor”. A thesis for a Doctor of philosophy, Delft University of Technology, Delft, Netherlands.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership