ISSN: 2375-3765
American Journal of Chemistry and Application  
Manuscript Information
 
 
In vitro Assessment of Pentacyclic Triterpenoids from Leaves of Pittosporum viridifloruma Gainst East Coast Fever Vector Rhipicephalus appendiculatus
American Journal of Chemistry and Application
Vol.2 , No. 6, Publication Date: Jan. 7, 2016, Page: 95-100
1715 Views Since January 7, 2016, 1119 Downloads Since Jan. 7, 2016
 
 
Authors
 
[1]    

Christine T. Nyabayo, Department of Chemistry, Egerton University, Egerton, Kenya.

[2]    

Josphat C. Matasyoh, Department of Chemistry, Egerton University, Egerton, Kenya.

[3]    

Charles Mwendia, Department of Biochemistry, Egerton University, Egerton, Kenya.

 
Abstract
 

Three pentacyclic triterpenoids; oleanolic acid 1, 3, 22, 28- trihydroxyolean-12-ene 2, β-Amyrin acetate 3were isolated from the plant Pittosporum viridiflorum (pittosporaceae), and the in vitro larvicidal activities of these compounds against East Coast Fever vector Rhipicephalus appendiculatus investigated. The mortalities of the larvae were determined after 72 h post treatment. The finding demonstrated that compound 2 was the most pronounced on the larvae with LC50/90 values of 53.0(49.75-56.64)/81.84(74.23-74.39) mg/mL followed by compound 3 with LC50/90 values of 56.22(52.60-60.45)/90.51(80.63-108.00) mg/mL and finally, compound 1 was the least pronounced on the larvae with LC50/90 values of 64.03(59.41-70.37)/106.42(91.67-136.24) mg/mL at 72 h respectively. The results collected bring to limelight alternative sources of more selective, biodegradable and natural larvicidal compounds which can be integrated into new acaricide formulations.


Keywords
 

Pittosporum viridiflorum, Rhipicephalus appendiculatus, Triterpenoid, In vitro, Acaricidal


Reference
 
[01]    

Mathison, B. A., & Pritt, B. S. (2014). Laboratory identification of arthropod ectoparasites. Clinical Microbiology Reviews: 27, 48-67.

[02]    

Wesonga, F. D., Gachohi, J. M., Kitala, P. M., Gathuma, J. M., & Njenga, M. J. (2015). Theileria parva infection zero prevalence and associated risk factors in cattle in Machakos County, Kenya. Tropical animal health and production, 47: 93-101.

[03]    

Odongo, D. O., Ueti, M. W., Mwaura, S. N., Knowles, D. P., Bishop, R. P., &Scoles, G. A. (2009). Quantification of Theileria parva in Rhipicephalus appendiculatus (Acari: Ixodidae) confirms differences in infection between selected tick strains. Journal of medical Entomology, 46: 888-894.

[04]    

Habeeb, S. M. (2010). Ethno-veterinary and medical knowledge of plant extracts and its method of application (Traditional and Modern) for tick control. Journal of World Applied Sciences, 11: 1047-1054.

[05]    

Otange, M. W, Grierson, D. S and Ndip N. R. (2012). Phytochemical studies and antioxidant activity of two South African medicinal plants traditionally used for the management of opportunistic fungal infections in HIV/AIDS patients. BMC Compl Altern Med.12; 1-7

[06]    

Hussain, H., Al-Harrasi, A., Al-Rawahi, A., Green, I. R., & Gibbons, S. (2014). Fruitful Decade for Antileishmanial Compounds from 2002 to Late 2011. Chemical Reviews, 114:10369-10428.

[07]    

Jäger, S., Laszczyk, M.N., & Scheffler, A. (2008). A preliminary pharmacokinetic study of betulin, the main pentacyclic triterpene from extract of outer bark of birch (Betulaealba cortex). Molecules: 13, 3224-3235.

[08]    

Gohari, A. R., Saeidnia, S., Hadjiakhoondi, A., Abdoullahi, M., & Nezafati, M. (2009). Isolation and Quantificative Analysis of Oleanolic Acid from Saturejamutica Fisch. & C. A. Mey. Journal of Medicinal Plants, 8: 65-69.

[09]    

Onoja, E., &Ndukwe, I. G., 2013. Isolation of oleanolic acid from chloroform extract of Borreria stachydea [(DC) Hutch. and Dalziel]. Journal of Natural Products and Plant Resource: 3:57-60.

[10]    

Moghaddam, F. M, Farimani, M. M, Salahvarzi, S, Amin, G. (2007). Chemical Constituents of Dichloromethane Extract of Cultivated Satureja khuzistanica. Evidence Based Alternative Medicine: 4; 95-98.

[11]    

Mahato, S. B.,& Kundu, A. P. (1994). 13C NMR Spectra of Pentacyclic Triterpenoids – A Compilation and some Salient Features. Phytochemistry; 37, 1517-1575.

[12]    

Katti, D. (2014). “Multiscale Modeling and Experiments for Bridging Molecular Scale Interactions to Macroscopic Properties”, by Dr. Dinesh Katti Professor & Chair, Dept. of Civil and Environmental Engineering, North Dakota State University.

[13]    

Seo, Y., Berger, J. M., Hoch, J., Neddermann, K. M., Bursuker, I., Mamber, S. W., & Kingston, D. G. I. (2002). A new triterpenoid saponin from Pittosporum viridiflorum from the Madagascar rainforest. Journal of Natural Products, 65: 65-68.

[14]    

Bailey, K. P. (1960). Note of the rearing of Rhipicephalus appendiculatus and their infection with Theileria parva for experimental transmission. Bulletin of epizootic diseases of Africa, 8: 33-43.

[15]    

FAO. FAO Animal Production and Health Division, Rome; 2004.

[16]    

Silva-Aguayo, G. (2006). Botanical Insecticides. Radcliffe's IPM World Textbook. University of Minnesota. Available atwww.radcliffes/ipm/network.htm.

[17]    

Matsunaga, S., Tanaka, R., & Akagi, M. (1988). Triterpenoids from Euphorbia maculate. Phytochemistry: 27535-537.

[18]    

Schinor, E. C., Salvador, M. J., Turatti, I. C., Zucchi, O. L., & Dias, D. A. (2004). Comparison of classical and ultrasound-assisted extractions of steroids and triterpenoids from three Chresta spp. Ultrasonics Sonochemistry, 11: 415-421.

[19]    

Johann, S., Soldi, C., Lyon, J. P., Pizzolatti, M. G., &Resende, M. A. (2007). Antifungal activity of the amyrin derivatives and in vitro inhibition of Candida albicans adhesion to human epithelial cells. Letters in applied microbiology: 45, 148-153.

[20]    

Sirisha, N., Sreenivasulu, M., Sangeeta, K., & Chetty, C. M. (2010). Antioxidant properties of Ficus species–A Review. International Journal of Pharmtechnological Research, 2(4), 2174-2182.

[21]    

Tori, K., Seo, S., Shimaoka, A. &Tomita, Y. (1974) Tetrahedron Letters 4227.

[22]    

Dinda, B., Debnath, S., Mohanta, B. C., &Harigaya, Y. (2010). Naturally occurring triterpenoid saponins. Chemistry & biodiversity, 7: 2327-2580.

[23]    

Habila, J. D., Shode, F. O., & Opoku, A. R. (2011). Triterpenoids from Eucalyptus grandis Hill ex Maiden inhibits platelet aggregation. African Journal of Microbiology Research, 5: 4646-4651.

[24]    

Moreau, R. A., Whitaker, B. D., Hicks, K. B. (2002). Phytosterols, phytostols and their conjugates in foods: structure diversity, quantitative analysis, and walth-promoting uses. Prog Lipid Res; 41,457-500.

[25]    

Boucias, D., & Pendland, J. C. (2012).Principles of insect pathology. Springer Science & Business Media.

[26]    

Lukens, R. J. (2013). Chemistry of fungicidal action. Springer Science & Business Media.

[27]    

Perrucci S, Macchioni G, Cioni PL, Flamini G, Morelli I. (1995). Structure/activity relationship of some natural monoterpenes as acaricides against Psoroptes cuniculi. Journal of Natural Products, 58: 1261–1264.

[28]    

Cantrell, C. L., Klun, J. A., Pridgeon, J., Becnel, J., & Duke, S. (2009). Structure/Activity relationship studies on the arthropod repellent callicarpenal. USDA-ARS. Available from: http://www.ars.usda.gov.

[29]    

Rizental, M. S. (2014). Effect of plant extracts and organic substances on mortality of Cornitermes cumulans (Isoptera: Termitidae).





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership