ISSN: 2375-3765
American Journal of Chemistry and Application  
Manuscript Information
 
 
Thermodynamic Effect of Bulk and Nano-CuSO4 Salts on Ceftazidime Antibiotic Using a Variety of Different Techniques
American Journal of Chemistry and Application
Vol.2 , No. 1, Publication Date: Mar. 3, 2015, Page: 1-11
1739 Views Since March 3, 2015, 1640 Downloads Since Apr. 12, 2015
 
 
Authors
 
[1]    

Elsayed M. Abouelleef, Basic Science Department, Delta Higher Institute for Engineering & Technology, Dakahlia, Mansoura, Egypt; Present: Chemistry Department, Faculty of Science and Arts, Northern Border University, Rafha, Saudi Arabia.

[2]    

Esam A. Gomaa, hemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt.

[3]    

Shereen E. Salem, hemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt.

 
Abstract
 

Characterization of nano-CuSO4, ceftazidime antibiotic and their complexes was done by using a variety of different techniques, transmission electron microscopy, infra red and conductometric measurements. The association parameters of CuSO4 salts in absolute MeOH were calculated using conductivity method and found to be greater for nano-CuSO4 than bulk CuSO4 salt. The thermodynamic parameters of complexation between CuSO4 salts and ceftazidime were calculated. Nano-particles showed higher values than does bulk CuSO4, this is due to the very high surface to volume ratio of nano-particles which lead to greater ability for ion – pair formation. The formation constants and Gibbs free energies of different complexes follow the order: Kf (1:1) > Kf (1:2) for (M:L) and ∆Gf (1:1) > ∆Gf (1:2) for (M:L).


Keywords
 

CuSO4, Ceftazidime, Transmission Electron Microscopy (TEM), Infra Red (IR), Fuoss-Shedlovsky, Association and Formation Constants and Thermodynamic Parameters


Reference
 
[01]    

E. A. Gomaa, E. M. Abou El-Leef, K. S Shalaby, S. E Salem. 2014. Thermodynamic Effect of Bulk and Nano-CuCl2 Salts on Tenoxicam Using a Variety of Different Techniques, Journal of Environments 1 (2), 44-53.

[02]    

N.D. Baskaran, G.G. Gan, K. Adeeba, I.C. Sam. 2007, Bacteremia in patients with febrile neutropenia after chemo-therapy at a university medical center in Malaysia, Int. J. In-fect. Dis., 23, 115-121

[03]    

J.D. Cavallo, D. Hocquet, P. Plesiat, R. Fabre, M. Rous-sel-Delvallez. 2007, Susceptibility of Pseudomonas ae-ruginosa to antimicrobials: a 2004 French multicentre hos-pital study, J. Antimicrob. Agents Chemother., 59, 1021-1024

[04]    

J.A. Claridge, N.M. Edwards, J. Swanson, T.C. Fabian, J.A. Weinberg, C. Wood, M.A. Croce. 2007, Aerosolized ceftazidime prophylaxis against ventilator-associated pneu-monia in high-risk trauma patients: results of a double-blind randomized study, Surg. Infect. (Larchmt), 8, 83-90

[05]    

K.J. Eagye, J.L. Kuti, D.P. Nicolau. 2007, Evaluating em-piric treatment options for secondary peritonitis using phar-macodynamic profiling, Surg. Infect. (Larchmt), 8, 215-226

[06]    

M.G. Martin, , 2007, Encephalopathy with myoclonic jerks resulting from ceftazidime therapy: an under-recognized po-tential side-effect when treating febrile neutropenia, Leuk. Lymphoma, 48, 413-414

[07]    

N.S. Raja, 2007, Antimicrobial susceptibility pattern of clinical isolates of Pseudomonas aeruginosa in a tertiary care hospital, J. Microbiol. Immunol. Infect., 40, 178-82

[08]    

V. Rodenas, M.S. Garcia, C.Sanchez-Pedreno, M.I. Albero. 1997, Spectrophotometric methods for the determina-tion of cephradine or ceftazidime in human urine using batch and flow-injection procedures, J. Pharm. Biomed. Anal., 15, 1687-1693.

[09]    

G. Adamis, M.G. Papaioannou, E.J.Giamarellos-Bourboulis, P. Gargalianos, J. Kosmidis, H. Giamarellou. 2004, Pharmacokinetic interactions of ceftazidime, imiprenem and aztreonam with amikacin in healthy volunteers, Int. J. Anti-microb. Agents, 23, 144-149

[10]    

A.R. Gennaro, Remington: The Science And Practice of Pharmacy, 20th ed., Rio de Janeiro, Brazil: Guanabara Koogan, 2004

[11]    

Martindale, The Complete Drug Reference, London, England: Pharmaceutical Press, 2005

[12]    

C.M. Myers, and J.L. Blumer, , 1983, Determination of cef-tazidime in biological fluids by using high-pressure liquid chromatography, Antimicrob. Agents Chemother., 24, 343-346

[13]    

M. Arséne, P. Favetta, B.Favier, J. Bureau. 2002, Com-parison of ceftazidime degradation in glass bottles and plastic bags under various conditions, J. Clin. Pharm.Therap., 27, 205-209

[14]    

J.G. Hardman and L.E. Limbird, The Pharmacological Basis of Therapeutics, New York, NY: McGraw-Hill Book Co., 2006

[15]    

T. Herkert, H. Prinz, K.A. Kovar. 2001, One hundred per-cent online identity check of pharmaceutical products by near-infrared spectroscopy on the packaging line, Eur. J. Pharm. Biopharm., 51, 9-16.

[16]    

M.A. Morgano, C.G. Faria, M.F. Ferrão. 2005,Determinação de proteína em café cru por espectroscopia NIR e regressão PLS, Ciênc. Tecnol. Aliment., 25, 25-31.

[17]    

J.S. Souza, and M.F. Ferrão. 2006, Aplicações da espectroscopia no infravermelho no controle de qualidade de medicamentos contendo diclofenaco de potássio. Parte I: Dosagem por regressão multivariada, Br. J. Pharm. Sci., 42, 437-445.

[18]    

A. A. El-Khouly, E. A. Gomaa, and S. Abou El-leef ; 2003. Apparent association constants of HgCl2 in presence of kryptofix-22 in mixed aqueous-organic solvents. Bulletin of electrochemistry 19 (5), 193-202.

[19]    

A. A. El-Khouly, E. A. Gomaa and S. A. El-leef ; 2003. Conductometry and solubility studies of (Cd2+-kryptofix-22) complexes in various hydroorganic solvents. Bulletin of electrochemistry 19 (4), 153-164.

[20]    

E. A. Gomaa, E. M. Abouelleef, E. T. Helmy; 2014. Solvation of Oxytetracycline Hydrochloride in Ethanol-Water Mixed Solvents. Reseach and Review J. of Chem. 3 (2), 22-27.

[21]    

E. A. Gomaa, E. M. Abouelleef , E.T.Helmy, 2013. Solvent effects on the thermodynamics of solvation of bariumdiphenylaminesulfonate in ethannol-water solvents. South.Braz. J. Chem., 21, 1-10.

[22]    

E.A. Gomaa, and E. M. Abou Elleef. 2013. Thermodynamics of the solvation of lead nitrate in mixed DMF-H2O solvents at 301.15 K. American Chemical Science Journal. 3 (4), 489-499.

[23]    

E. A. Gomaa, E. M. Abou Elleef, A. Fikry, M. Khairy, RMA Qarn. 2014. Thermodynamics of the Solvation of Lead Nitrate in Mixed Acetone-H2O Solvents at Different Temperatures. Research & Review, Journal of Chemistry 3 (3), 22-28.

[24]    

E.A.Gomaa, E.M. Abou Elleef. 2014. Thermodynamics of Solvation of Barium Diphenylaminesulfonate in Ethanol-Water Mixed Solvents. Thermal Energy and Power Engineering 3 (2). 222-226.

[25]    

E. A. Gomaa, E. M. Abou Elleef, A. Fekri, M Khairy, R. M. A. Karn. 2014. Thermodynamics of the Solvation of Lead Nitrate in Mixed Propanol-H2O Solvents at different temperature. Research & Review, Journal of Pharmacy and Pharmaceutical Sciences 3 (3), 45-54.

[26]    

E. A. Gomaa, E. M. Abou Elleef, K. M. Ibrahim, A. A. Ibrahim, M. S. Mashaly. 2014. Thermodynamics of Solvation and Apparent Molar Volumes for O-Toluic Acid in Ethanol-Water Mixtures At 298.15 K. Research & Review, Journal of Chemistry3 (3), 15-21.

[27]    

E. M. Abou Elleef, E. A. Gomaa. 2013. Thermodynamics of Ion Association in the Saturated Solution of Barium Diphenyl amine sulfonate in Ethanol-Water Mixed Solvent. International Journal of Engineering and Innovative Technology (IJEIT) 3 (6) 308-313.

[28]    

L. M. Harwood, and C. J. Moody (1989). Experimental organic chemistry: Principles and Practice (Illustrated ed.). Wiley-Blackwell. p. 292.

[29]    

A.I. Popov, J.M. Lehn, in: G.A. Melson (Ed.), Coordination Chemistry of Macrocyclic Compounds, Plenum press, New York, 1985.

[30]    

B.O. Strasser, A.I. Popov, J. Am. Chem. Soc. 107 (1985) 7921–7924.

[31]    

A.I. Popov, Pure Appl. Chem. 51 (1979) 101–105.

[32]    

W. Gryzybkowski and R. Pastewski; Electrochimica Acta; (1980) 25, 279 .

[33]    

A.A. El-Khouly, E.A. Gomaa and S.E.Salem ; South, Braz. J. Chem.20 (2012).

[34]    

T. Shdlovsky and R.L. Kay ; J.Phys., Chem. 60 (1956) 151.

[35]    

E. Hirsch and R.M. Fuoss ; J. Amer. Chem. Phys., 25 (1956)1199.

[36]    

R. M. Fuoss and F. Accascina ; Electrolytic conductance, Interscience, New York (1959).

[37]    

O. Popuych, A. Gibofsky and D.H. Berne ; Analytic. Chem., 44(1972)811.

[38]    

M. S. Isabel, L. Lampreia, and A.V. Ferreira, J. Chem. Soc. Faraday. Trans. T., 92 (1996) 1487.

[39]    

P.W. Atkins; Physical chemistry; Oxford University Press (1978).

[40]    

D.J.G. Ives; Chemical Thermodynamics, University Chemistry, Macdonald Technical and Scientific, London (1971).

[41]    

Y. Takeda; Bull. Chem. Soc. Jpn (1983) 56,3600.

[42]    

M. R. Nasrabadi, F. Ahmadi, S.M. Pourmortazavi, M.R. Ganjali, K. Alizadeh; Journal of Molecular Liquids; 144 (2009) 97–101.

[43]    

Y. Takeda: Thermodynamic Study for Dibenzo-24-crown-8 Complexes with Alkali Metal Ions in Nonaqueous Solvents. Bull. Chem. Soc. Jpn. 56, 3600–3602 (1983).

[44]    

D.P. Zollinger., E.Bulten, A. Christenhuse, Bos, M., Van Der W.E. Linden,.: Computerized conductometric determination of stability constants of complexes of crown ethers with alkali metal salts and with neutral molecules in polar solvents. Anal. Chim. Acta. 198, 207–222 (1987).

[45]    

P. Debye., H. Huckel,: The theory of electrolyte II – The border law for electrical conductivity. Phys. Z. 24, 305 (1923).

[46]    

E.A. Gomaa, EMA Elleef, ET Helmy., 2014, Conductance Studies on Complex Formation between CaCl2 and Ampicillin in Water and in Methanol Solvents at Different Temperatures. Research & Review, Journal of Pharmacy and Pharmaceutical Sciences 3 (3), 45-

[47]    

E.A. Gomaa, H.M.A. El-Nader, S.E. Rashed., 2014, Gbbs free energies for interaction of CuCl2 with (E)-1-phenyl-2-(2-(4-((E)-pheyldiazenyl) phenyl hydrazono)-2-(phenylsulfonyl) ethanone in ethanol at different temperatures. The International Journal of Engineering and Science (IJES) 3, 64-73.

[48]    

E.A. Gomaa, K.M. Ibrahim, N.M. Hassan., 2014, Evaluation of thermodynamic parameters (conductometrically) for the interaction of Cu (II) ion with 4-phenyl-1-diacetyl monoxime-3-thiosemicarbazone (BMPTS) in (60% V) ethanol (EtOH-H2O) at different temperatures. The iInternational Journal of Engineering and Science (IJES) 3, 44-51.

[49]    

E.A. Gomaa, K.M. Ibrahim, N.M. Hassan., 2014, Thermodynamics of Complex Formation (conductometrically) Between Cu (II) ion and 4-phenyl-1-diacetyl monoxime–3-thiosemicarbazone (BMPTS) in Ethanol at Different Temperatures. Research & Review, Journal of Chemistry 3 (1), 47-55.

[50]    

E.A. Gomaa, E.M.A. Elleef, M.G. Abdel-Razek., 2013, Thermodynamics of the Solvation of CaSO4 in Mixed DMF-H2O at 301.15 K. International Research Journal of Pure & Applied Chemistry 3 (4), 320-329.

[51]    

M.N.A. El-Hady, R.R.. Zaky, K.M. Ibrahim, E.A. Gomaa., 2012, (E)-3-(2-(furan-ylmethylene) hydrazinyl)-3-oxo-N-(thiazol-2yl) propanamide complexes: Synthesis, characterization and antimicrobial studies. Journal of Molecular Structure 1016 (Complete), 169-180.

[52]    

E.A. Gomaa, K.M. Ibrahim, N.M. Hassan., 2012, Conductometric Study of Complex Formation Between Cu (II) Ion and 2-hydroxyimino-3-(2'-hydazonopyridyl)-butane (HL). Frontiers in Science 2 (4), 76-85.

[53]    

E.A. Gomaa, B.A. Al-Jahdali., 2012, Conductometric Studies of Calcium Ions with Kryptofix 221 in Mixed MeOH-DMF Solvents at Different Temperatures. Education 2 (3), 37-40.

[54]    

E.A. Gomaa, B.M. Al-Jahdalli., 2012, Electrical Conductance of Cu (NO3)2 with Kryptofix-222 in Mixed (MeOH–DMF) Solvents at Different Temperatures. American Journal of Environmental Engineering 2 (2), 6-12.

[55]    

E.A. Gomaa, B.A.M. Al-Jahdali., 2012, Electrochemical Studies on the Interaction of Cadmium Ion with Kryptofix 22 in MeOH-DMF Solutions at different Temperatures. Science and Technology 2 (4), 66-76.

[56]    

K.M. Ibrahim, E.A. Gomaa, R.R. Zaky, M.N. El-Hady. ., 2011, The Association And Formation Constants For NiCl2 Stoichiometric Complexes with (E)-3-(2-Benzylidene Hydrazinyl)-3-Oxo-N-(Thiazol-2-yl) Propanamide. Analele Universitatii Bucuresti: Chimie 20 (2).

[57]    

M.M. Mostafa, E.A.H. Gomaa, M.A. Mostafa, F.I. El-Dossouki., 2000, Complexes of Some Crown Ethers with Hg (II) Chloride, Bromide, Iodide and Cyanide. Sythesis and Reactivity in Inorganic and Matel-Organic Chemistry 30 (1), 157-174.

[58]    

U.V. Stockar, and A. M. L. van der Wielen., 1997, Thermodynamics in biochemical engineering. J. Biotechnol. 59: 25-27.

[59]    

J. R. Anacona and J. J. Santaella, “In vitro, antibacterial activity of metal complexes containing a cephaclor derivative ligand,” Latin American Journal of Pharmacy, vol. 32, no. 1, pp. 101–106, 2013.

[60]    

J. R. Anacona and M. Lopez, “Mixed-ligand nickel(II) complexes containing sulfathiazole and cephalosporin antibiotics synthesis, characterization, and antibacterial activity,” International Journal of Inorganic Chemistry, vol. 2012, Article ID 106187, 8 pages, 2012.

[61]    

K. Singh, Y. Kumar, P. Puri, and G. Singh, “Spectroscopic, thermal, and antimicrobial studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes derived from bidentate ligands containing N and S donor atoms,”Bioinorganic Chemistry and Applications, vol. 2012, Article ID 729708, 9 pages, 2012.

[62]    

M. R. Karekal, V. Biradar, and M. B. H. Mathada, “Synthesis, characterization, antimicrobial, DNA cleavage, and antioxidant studies of some metal complexes derived from Schiff base containing indole and quinoline moieties,” Bioinorganic Chemistry and Applications, vol. 2013, Article ID 315972, 16 pages, 2013.

[63]    

K. M. Khan, M. Khan, M. Ali et al., “Superoxide respiratory burst inhibitory activity of Bis-schiff bases of isatins,” Journal of Chemical Society of Pakistan, vol. 35, no. 3, pp. 987–993, 2013.

[64]    

K. M. Khan, M. Taha, F. Rahim et al., “Acylhydrazide schiff bases: synthesis and antiglycation activity,”Journal of Chemical Society of Pakistan, vol. 35, no. 3, pp. 929–937, 2013.

[65]    

Q.B. Li, L.W. Xue, W.C.Yang and G.Q. Zhao, “Two new schiff base NiII and CuII complexes: synthesis and structures,” Journal of the Chilian Chemical Society, vol. 58, no. 3, pp. 1880–1883, 2013.

[66]    

J. R. Anacona and C. Patiño, “Metalloantibiotics: synthesis and antibacterial activity of ceftazidime metal complexes,” Journal of Coordination Chemistry, vol. 62, no. 4, pp. 613–621, 2009.

[67]    

A. E. Ali, “Synthesis, spectral, thermal and antimicrobial studies of some new tri metallic biologically active ceftriaxone complexes,” Spectrochimica Acta A, vol. 78, no. 1, pp. 224–230, 2011.

[68]    

N. Raman, S. Sobha, and L. Mitu, “Design, synthesis, DNA binding ability, chemical nuclease activity and antimicrobial evaluation of Cu(II), Co(II), Ni(II) and Zn(II) metal complexes containing tridentate Schiff base,” Journal of Saudi Chemical Society, vol. 17, no. 2, pp. 151–159, 2013.

[69]    

N. Sultana, M. S. Arayne, and M. Afzal, “Synthesis and antibacterial activity of cephradine metal complexes: part II complexes with cobalt, copper, zinc and cadmium,” Pakistan Journal of Pharmaceutical Sciences, vol. 18, no. 1, pp. 36–42, 2005.

[70]    

A. Sakthivel, N. Raman, and L. Mitu, “DNA interaction studies of pyrazolone and diimine incorporated Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes: synthesis, spectroscopic characterization and antimicrobial study,” Monatshefte Fur Chemie—Chemical Monthly, vol. 144, no. 5, pp. 605–620, 2013.

[71]    

Z. H. Chohan and C. T. Supuran, “In-vitro antibacterial and cytotoxic activity of cobalt (ii), copper (ii), nickel (ii) and zinc (ii) complexes of the antibiotic drug cephalothin (keflin),” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 20, no. 5, pp. 463–468, 2005.

[72]    

Z. H. Chohan, H. Pervez, K. M. Khan, A. Rauf, G. M. Maharvi, and C. T. Supuran, “Antifungal cobalt(II), copper(II), nickel(II) and zinc(II) complexes of furanyl-thiophenyl-, pyrrolyl-, salicylyl- and pyridyl-derived cephalexins,” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 19, no. 1, pp. 85–90, 2004.

[73]    

M. S. Iqbal, I. H. Bukhari, and M. Arif, “Preparation, characterization and biological evaluation of copper(II) and zinc(II) complexes with Schiff bases derived from amoxicillin and cephalexin,” Applied Organometallic Chemistry, vol. 19, no. 7, pp. 864–869, 2005.

[74]    

I. H. Bukhari, M. Arif, I. Akbar, and A. H. Khan, “Preparation, characterization and biological evaluation of Schiff base transition metal complexes with cephradine,” Pakistan Journal of Biological Sciences, vol. 8, no. 4, pp. 614–617, 2005.

[75]    

M. Arif, M. M. R. Qurashi, and M. A. Shad, “Metal-based antibacterial agents: synthesis, characterization, and in vitro biological evaluation of cefixime-derived Schiff bases and their complexes with Zn(II), Cu(II), Ni(II), and Co(II),” Journal of Coordination Chemistry, vol. 64, no. 11, pp. 1914–1930, 2011.

[76]    

S. Joshi, V. Pawar, and V. Uma, “Antibacterial and antioxidant properties of Mn (II), Co (II), Ni (II) and Zn (II) complex of Schiff base derived from cephalexin,” Research Journal of Pharmaceutical, Biological and Chemical Sciences, vol. 2, no. 1, pp. 61–70, 2011.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership