ISSN: 2375-3811
International Journal of Biological Sciences and Applications  
Manuscript Information
 
 
Molecular and Meso-Scale Computational Analyses of Microstructure and Behavior of Actin Monomers, Trimers and Polymers
International Journal of Biological Sciences and Applications
Vol.1 , No. 3, Publication Date: Sep. 11, 2014, Page: 90-112
2074 Views Since September 11, 2014, 686 Downloads Since Apr. 14, 2015
 
 
Authors
 
[1]    

Angela Grujicic, Department of Bioengineering, Clemson University, Clemson SC 29634, USA.

[2]    

Mica Grujicic, Department of Mechanical Engineering, Clemson University, Clemson SC 29634, USA.

[3]    

Ramin Yavari, Department of Mechanical Engineering, Clemson University, Clemson SC 29634, USA.

[4]    

Jennifer Snipes, Department of Mechanical Engineering, Clemson University, Clemson SC 29634, USA.

[5]    

Subrahmanian Ramaswami, Department of Mechanical Engineering, Clemson University, Clemson SC 29634, USA.

 
Abstract
 

This paper deals with the study of microstructure and properties in actin monomers and polymers using advanced computational methods and tools. Specific aspects of actin microstructure and properties include: topological stability, DNase I-binding (DB) loop conformation, G-actin flatness, conformation of nucleotide-binding cleft, rate of ATP hydrolysis, filament persistence-length, filament bending stiffness and axial stiffness, and actin-material elastic-stiffness matrix/moduli. These actin microstructural and property aspects are investigated using a combination of all-atom and coarse-grained molecular-level computational methods, and various coarse-graining and trajectory-data post-processing procedures. Wherever possible, the results obtained are compared with their experimental counterparts in order to validate the computational approach used. Also, by comparing the all-atom and the corresponding coarse-grained simulation results, it has been established that, for the most part, coarse-grained force-field functions derived are of sufficient accuracy/fidelity to yield reasonable data regarding actin microstructure and properties.


Keywords
 

Actin, All-Atom Computational Analyses, Coarse-Grained Computational Analyses, Molecular Dynamics


Reference
 
[01]    

T. D. Pollard, L. Blanchoin and R. D. Mullins, “Molecular mechanisms controlling actin filament dynamics in nonmuscle cells,” Annual Review of Biophysics and Biomolecular Structure, 29, 545–576, 2000.

[02]    

J. Howard, “Mechanics of Motor Proteins and the Cytoskeleton,” Sinauer Associates, Sunderland, MA, 2001.

[03]    

E. D. Korn, “Actin polymerization and its regulation by proteins from nonmuscle cells,” Physiol. Rev., 62, 672–737, 1982.

[04]    

P. Sheterline, J. Clayton and J. C. Sparrow, “Actin,” Oxford University Press, New York, NY, 1998.

[05]    

J. A. Tuszynski, J. A. Brown and D. Sept, “Models of the collective behavior of proteins in cells: tubulin, actin and motor proteins,” Journal of Biological Physics, 29, 401–428, 2003.

[06]    

A. Grujicic, M. Grujicic, J. S. Snipes, R. Galgalikar and S. Ramaswami, “Material Modeling and Finite-Element Analysis of Active-Contractile and Passive Responses of Smooth Muscle Tissue,” Review of Bioinformatics and Biometrics, 2, 45–64, 2013.

[07]    

K. C. Holmes, D. Popp, W. Gebhard and W. Kabsch, “Atomic structure of the actin: DNase I complex,” Nature, 347, 37–44, 1990.

[08]    

L. Blanchoin and T. D. Pollard, “Hydrolysis of ATP by polymerized actin depends on the bound divalent cation but not profiling,” Biochemistry, 41, 597–602, 2002.

[09]    

M. A. Rould, Q. Wan, P. B. Joel, S. Lowey and K. M. Trybus, “Crystal structures expressed nonpolymerizable monomeric actin in the ADP and ATP states,” Journal of Biological Chemistry, 281, 31909–31919, 2006.

[10]    

E. Reisler and E. H. Egelman, “Actin's structure and function: what we still do not understand,” Journal of Biological Chemistry, 282, 36133–36137, 2007.

[11]    

P. Dalhaimer, T. D. Pollard and B. J. Nolen, “Nucleotide-mediated conformational changes of monomeric actin and Arp3 studied by molecular dynamics simulations,” Journal of Molecular Biology, 376, 166–183, 2007.

[12]    

J. Pfaendtner, D. Branduardi, M. Parrinello, T. D. Pollard and G. A. Voth, “Nucleotide-dependent conformational states of actin,” Proceedings of the National Academy of Sciences USA, 106, 12723–12728, 2009.

[13]    

J. Pfaendtner and G. A. Voth, “Molecular dynamics simulation and coarse-grained analysis of the Arp2/3 complex,” Biophysical Journal, 95, 5324–5333, 2008.

[14]    

T. Oda, M. Iwasa, T. Aihara, Y. Maeda and A. Narita, “The nature of the globular-to-fibrous-actin transition,” Nature, 457, 441–445, 2009.

[15]    

P. Graceffa and R. Dominguez, “Crystal structure of monomeric actin in the ATP state,” Journal of Biological Chemistry, 278, 34172–34180, 2003.

[16]    

L. R. Otterbein, P. Graceffa and R. Dominguez, “The crystal structure of uncomplexed actin in the ADP state,” Science, 293, 708–711, 2001.

[17]    

K. C. Holmes, D. Popp, W. Gebhard and W. Kabsch, “Atomic model of the actin filament,” Nature, 347, 44–49, 1990.

[18]    

A. Orlova and E. H. Egelman, “A Conformational Change in the Actin Subunit Can Change the Flexibility of the Actin Filament,” Journal of Molecular Biology, 232, 334–341, 1993.

[19]    

S. Y. Khaitlina, J. Moraczewska and H. Strzelecka-Golaszewska, “The actin/actin interactions involving the N-terminus of the DNase-I-binding loop are crucial for stabilization of the actin filament,” European Journal of Biochemistry, 218, 911–920, 1993.

[20]    

E. Kim, M. Motoki, K. Seguro, A. Muhlrad and E. Reisler, “Conformational changes in subdomain 2 of G-actin: fluorescence probing by dansyl ethylenediamine attached to Gln-41,” Biophysical Journal, 69, 2024–2032, 1995.

[21]    

A. Muhlrad, P. Cheung, B. C. Phan, C. Miller and E. Reisler, “Dynamic properties of actin. Structural changes induced by beryllium fluoride,” Journal of Biological Chemistry, 269, 11852–11858, 1994.

[22]    

J. Moraczewska, H. Strzelecka-Golaszewska, P. D. J. Moens and C. G. dos Remedios, “Structural changes in subdomain 2 of G-actin observed by fluorescence spectroscopy,” Biochemical Journal, 317, 605–611, 1996.

[23]    

Y. S. Borovikov, J. Moraczewska, M. I. Khoroshev and H. Strzelecka-Golaszewska, “Proteolytic cleavage of actin within the DNase-I-binding loop changes the conformation of F-actin and its sensitivity to myosin binding,” Biochimica et Biophysica Acta, 1478, 138–151, 2000.

[24]    

A. Orlova and E. H. Egelman, “Structural basis for the destabilization of F-actin by phosphate release following ATP hydrolysis,”Journal of Molecular Biology, 227, 1043–1053, 1992.

[25]    

L. D. Belmont, A. Orlova, D. G. Drubin and E. H. Egelman, “A change in actin conformation associated with filament instability after Pi release,” Proceedings of the National Academy of Sciences USA, 96, 29–34, 1999.

[26]    

S. B. Smith, L. Finzi and C. Bustamante, “Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads,” Science, 258, 1122–1126, 1992.

[27]    

T. R. Strick, J.-F. Allemand, D. Bensimon, A. Bensimon and V. Croquette, “The elasticity of a single supercoiled DNA molecule,” Science, 271, 1835–1837, 1996.

[28]    

S. Panyukov and Y. Rabin, “Thermal Fluctuations of Elastic Filaments with Spontaneous Curvature and Torsion,” Physical Review Letters, 85, 2404–2407, 2000.

[29]    

S. Panyukov and Y. Rabin, “Fluctuating filaments: statistical mechanics of helices,” Physical Review E, 62, 7135–7146, 2000.

[30]    

A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, et al, “All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins,” Journal of Physical Chemistry B, 102, 3586–3616, 1998.

[31]    

B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, , D. J. States, S. Swaminathan and M. Karplus, “CHARMM: A program for macromolecular energy, minimization, and dynamics calculations,” Journal of Computational Chemistry, 4, 187–217, 1983.

[32]    

M. P. Allen and D. J. Tildesley, “Computer Simulation of Liquids,” Oxford University Press, New York, 1987.

[33]    

J.-W. Chu and G. A. Voth, “Allostery of actin filaments: Molecular dynamics simulations and coarse-grained analysis,” Proceedings of the National Academy of Sciences USA, 102, 13111–13116, 2005.

[34]    

E. Andrianantoandro, L. Blanchoin, D. Sept, J. A. McCammon and T. D. Pollard, “Kinetic mechanism of end-to-end annealing of actin filaments,” Journal of Molecular Biology, 312, 721–730, 2001.

[35]    

D. Sept, J. Y. Xu, T. D. Pollard and J. A. McCammon, “Annealing accounts for the length of actin filaments formed by spontaneous polymerization,” Biophysical Journal, 77, 2911–2919, 1999.

[36]    

R. Goetz and R. Lipowsky. “Computer simulations of bilayer membranes: self-assembly and interfacial tension,” Journal of Chemical Physics 108, 7397–7409, 1998.

[37]    

S. J. Marrink and A. E. Mark, “Molecular dynamics simulation of the formation, structure, and dynamics of small phospholipid vesicles,” Journal of the American Chemical Society, 125, 15233–15242, 2003.

[38]    

J. C. Shelley and M. Y. Shelley, “Computer simulation of surfactant solutions,” Current Opinions in Colloid and Interface Science, 5, 101–110, 2000.

[39]    

B. Smit, K. Esselink, P. A. Hilbers, N. M. van Os, L. A. M. Rupert and I. Szleifer, “Computer simulations of surfactant self-assembly,” Langmuir, 9, 9–11, 1993.

[40]    

J.-W. Chu and G. A. Voth, “Coarse-Grained Modeling of the Actin Filament Derived from Atomistic-Scale Simulations,” Biophysical Journal, 90, 1572–1582, 2006.

[41]    

M. M. Tirion, “Large amplitude elastic motions in proteins from a single parameter, atomic analysis,” Physical Review Letters 77, 1905–1908, 1996.

[42]    

T. Halioglu, I. Bahar and B. Erman, “Gaussian dynamics of folded proteins,” Physical Review Letters 79, 3090–3093, 1997.

[43]    

I. Bahar and R. L. Jernigan, “Vibrational dynamics of transfer RNAs: comparison of the free and synthetase-bound forms,” Journal of Molecular Biology, 281, 871–884, 1998.

[44]    

M. Delarue and Y. H. Sanejouand, “Simplified normal mode analysis of conformational transitions in DNA-dependent polymerases: the elastic network model,” Journal of Molecular Biology, 320, 1011–1024, 2002.

[45]    

W. J. Zheng and S. Doniach, “A comparative study of motor protein motions by using a simple elastic-network model,” Proceedings of the National Academy of Sciences USA, 100, 13253–13258, 2003.

[46]    

W. J. Zheng and B. Brooks, “Identification of dynamical correlations within the myosin motor domain by the normal mode analysis of an elastic network model,” Journal of Molecular Biology, 346, 745–759, 2005.

[47]    

M. M. Tirion, D. Benavraham, M. Lorenz and K. C. Holmes, “Normal-modes as refinement parameters for the F-actin model,” Biophysical Journal, 68, 5–12, 1995.

[48]    

Visualizer, http://www.accelrys.com/mstudio/ms modeling/visualiser.html, accessed on accessed on Apr 21, 2013.

[49]    

Matlab, http://www.mathworks.com, accessed on May 3, 2013.

[50]    

PDB, http://www.rcsb.org/pdb, accessed on May 3, 2013.

[51]    

W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey and M. L. Klein, “Comparison of simple potential functions for simulating liquid water,” Journal of Chemical Physics, 79, 926–935, 1983.

[52]    

W.R.P. Scott, P.H. Huenenberger, I.G. Tironi, A.E. Mark, S.R. Billeter, J. Fennen, A.E. Torda, T. Huber, P. Krueger and W.F. van Gunsteren, “The GROMOS Biomolecular Simulation Program Package,” Journal of Physical Chemistry A, 103, 3596–3607, 1999.

[53]    

T. Schlick, “Molecular Modeling and Simulation: an Interdisciplinary Guide,” Interdisciplinary Applied Mathematics, Mathematical Biology, Vol. 21, Springer-Verlag: New York, NY, 2002.

[54]    

H. J. C. Berendsen, D. van der Spoel and R. van Drunen, “GROMACS: A message-passing parallel molecular-dynamics implementation,” Computer Physics Communications, 91, 43–56, 1995.

[55]    

L. Verlet, “Computer ‘experiments’ on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules,” Physical Review, 159, 98–103, 1967.

[56]    

M. P. Allen and D. J. Tildesley, “Computer Simulation of Liquids,” Oxford Univ. Press, New York, 1987.

[57]    

Discover, http://www.accelrys.com/mstudio/ms modeling/discover.html

[58]    

J. F. Marko and E. D. Siggia, “Stretching DNA,” Macromolecules, 28, 8759–8770, 1995.

[59]    

B. R. Brooks, D. Janezic and M. Karplus, “Harmonic analysis of large systems. I. Methodology,” Journal of Computational Chemistry, 16, 1522–1542, 1995.

[60]    

S. Timoshenko and J. N. Goodier, “Theory of Elastic Stability, 2nd Ed.,” McGraw-Hill: Columbus, OH, 1951.

[61]    

J. D. Eshelby, “The determination of the elastic field of an ellipsoidal inclusion, and related problems,” Proceedings of the Royal Society of London A, 241, 376–396, 1957.

[62]    

T. Mura, “Micromechanics of Defects in Solids,” Kluwer: Dordrecht, Germany, 1987.

[63]    

Tuck C. Choy, “Effective Medium Theory: Principles and Applications (International Series of Monographs on Physics (Oxford, England), 102),” Oxford University Press (Sd)., 1999

[64]    

S. Nemat-Nasser and M. Hori, “Micromechanics: Overall Properties of Heterogeneous Materials (North Holland Series in Applied Mathematics and Mechanics),” Elsevier: New York, NY, 1993.

[65]    

M. S. Green, “Markoff Random Processes and the Statistical Mechanics of Time-Dependent Phenomena. II. Irreversible Processes in Fluids,” Journal of Chemical Physics, 22, 398–413, 1954.

[66]    

R. Kubo, “Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems,” Journal of the Physical Society of Japan, 12, 570–586, 1957.

[67]    

M. Iwasa, K. Maeda, A. Narita, Y. Maéda and T. Oda, “Dual roles of Gln137 of actin revealed by recombinant human cardiac muscle alpha-actin mutants,” Journal of Biological Chemistry, 283, 21045–22103, 2008.

[68]    

H. Isambert, P. Venier, A. C. Maggs, A. Fattoum, R. Kassab, D. Pantaloni and M. F. Carlier, “Flexibility of actin filaments derived from thermal fluctuations. Effect of bound nucleotide, phalloidin, and muscle regulatory proteins,” Journal of Biological Chemistry, 270, 11437–11444, 1995.

[69]    

H. Lee, J. M. Ferrer, F. Nakamura, M. J. Lang and R. D. Kamma, “Passive and active microrheology for cross-linked F-actin networks in vitro,” Acta Biomaterialia, 6, 1207–1218, 2010.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership