ISSN: 2375-3811
International Journal of Biological Sciences and Applications  
Manuscript Information
 
 
Noninteger Coding of Biological Origin for Information Storage and Processing
International Journal of Biological Sciences and Applications
Vol.1 , No. 4, Publication Date: Sep. 22, 2014, Page: 147-151
2067 Views Since September 22, 2014, 908 Downloads Since Apr. 14, 2015
 
 
Authors
 
[1]    

Alexander Alexander Tulub, Centre for Interdisciplinary Computational and Dynamical Analysis, University of Manchester, Manchester, United Kingdom; School of Biology of Saint-Petersburg State University, Saint-Petersburg, Russia.

 
Abstract
 

A pair of two polynucleotide sequences wound around the carbon nanotube serves the basis for noninteger (the base of natural logarithm, e) coding. The device description is proposed. New concepts of e-bit and e-byte are introduced. The device is operating with spin phases that are read out with a laser beam. The basis of the device is the Spin Hall Effect that stems from large spin-orbit coupling and hyperfine coupling. Together these couplings split the Fermi level into a number of sublevels which finally produce a conductive zone. Decoherence is excluded thanks to selection rules. The device may operate at 100 GHz or higher that is a revolutionary breakthrough in constructing super fast computers of new generations.


Keywords
 

Noninteger Coding, Polynucleotide Chains, Spintronics, Information


Reference
 
[01]    

Meister, G. RNA biology. Wiley-VCH, Weinheim, 355 p. (2011).

[02]    

Surthene, L.M., Timpledon, and M.T. Markensen. S.F. Ribosome: Organelle, Amino Acid, Messanger RNA, Gene, Transfer RNA, RNA, Protein, Ribosome, Ribosomal RNA, Peptidyl Transferase. BetaScript Publ., 120 p. (2010).

[03]    

T. Tlusty. A Colorful Origin for the Genetic Code: Information Theory, Statistical mechanics and emergence of molecular codes. Phys. Life Rev. 7, 362-371 (2010).

[04]    

W. Buchholz. Computer System. McGraw-Hill Book CompanyInc. N.Y. – London (1962).

[05]    

A.K. Maini. Digital Electronics Principals, Devices and Applications. Chichester, England.: Jonh Wiley & Sons Ltd. (2007).

[06]    

M. Glusker, D.M. Hogan, P. Vass. "The Ternary Calculating Machine of Thomas Fowler," IEEE Annals of the History of Computing, vol. 27, no. 3, pp. 4-22, July-September 2005.

[07]    

N.P. Brusnetsov. Trinary Computers “Setun” and “Setun-70”. SORUCOM Conference, Moscow. (2006).

[08]    

G. Trogemann, A. Yu. Nitussov, W. Ernst, Computing in Russia: the history of computer devices and information technology revealed, Vieweg+Teubner Verlag, pp. 19, 55, 57, 91, 104–107, ISBN 978-3-528-05757-2 (2001).

[09]    

M.V. Berry. Proceedings of the Royal Society of London, A, 392, 45 (1984).

[10]    

A.A. Tulub, J. Crowell, Ali Maddah. Noninteger coding. MIT Reports. Boston, USA (2013).

[11]    

A.A. Tulub. How the Genetic Code Sees the Right Amino Acid at a Nanoscale Distance? Appl. Cell Biol. 2(4) 153-155 (2013).

[12]    

M.I. Dyakonov. Spin Physics in Semiconductors. Springer-Verlag. N.Y.-London (2008).

[13]    

G. K. Woodgate. Elementary Atomic Structure. Oxford University Press. (1999).

[14]    

M. I. Dyakonov and V. I. Perel. Possibility of orientating electron spins with current. Sov. Phys. JETP Lett. 13, 467 (1971).

[15]    

Y. Ando. Topological Insulator Material. J. Phys. Soc. (Japan) 1, 1-35 (2013).

[16]    

A.A. Tulub Spin phase links up the genetic code with the protein synthesis - a long-expected answer on how the genetics works. Biochemistry (an Indian J). 8(3), 89-93 (2014).





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership