ISSN: 2375-3846
American Journal of Science and Technology  
Manuscript Information
 
 
Injection Over Molding of Polymer-Metal Hybrid Structures
American Journal of Science and Technology
Vol.1 , No. 4, Publication Date: Aug. 29, 2014, Page: 168-181
2714 Views Since August 29, 2014, 4453 Downloads Since Apr. 14, 2015
 
 
Authors
 
[1]    

M. Grujicic, Department of Mechanical Engineering, Clemson University, Clemson SC 29634, USA.

 
Abstract
 

A comprehensive overview is provided of the key aspects of injection over-molding technologies used in automotive body-in-white (BIW) structural applications. Specifically, the following aspects of injection-molding technologies are discussed: (a) fundamental concepts related to synergistic polymer/metal interactions; (b) classification of the technologies; (c) basics of polymer/metal adhesion and load transfer; (d) application of computational engineering methods and tools for process and product-performance simulations; and (e) compatibility of different injection-molding PMH technologies with the automotive BIW manufacturing process chain.


Keywords
 

Injection Over-Molding, Polymer-Metal Hybrid (PMH) Technologies and Structures, Automotive Structural Components


Reference
 
[01]    

Grujicic M, Sellappan V, Arakere G, Seyr N, Erdmann M. Computational Feasibility Analysis of Direct-Adhesion Polymer-To-Metal Hybrid Technology for Load-Bearing Body-In-White Structural Components. J Mater Process Tech, 2008; 195: 282–298.

[02]    

Grujicic M, Sellappan V, Omar MA, Seyr N, Obieglo A, Erdmann M, Holzleitner J. An Overview of the Polymer-to-Metal Direct-Adhesion Hybrid Technologies for Load-Bearing Automotive Components. J Mater Process Tech, 2008; 197: 363–373.

[03]    

Grujicic M, Arakere G, Pisu P, Ayalew B, Seyr N, Erdmann M. Application of Topology, Size and Shape Optimization Methods in Polymer Metal Hybrid Structural Lightweight Engineering. Multidisc Model Mater Struc, 2008; 4: 305–330.

[04]    

Grujicic M, Sellappan V, Mears L, Xuan X, Seyr N, Erdmann M, Holzleitner J. Selection of the Spraying Technologies for Over-Coating of Metal-Stampings with Thermo-Plastics for Use In Direct-Adhesion Polymer Metal Hybrid Load-Bearing Component. J Mater Process Tech, 2008; 198: 300–312.

[05]    

Grujicic M, Pandurangan B, Bell WC, Daqaq M, Ma L, Seyr N, Erdmann M, Holzleitner J. A Computational Analysis and Suitability Assessment of Cold-Gas Dynamic Spraying of Glass-Fiber Reinforced Poly-Amide 6 for Use in Direct-Adhesion Polymer Metal Hybrid Automotive Components. Appl Surf Sci, 2008; 254: 2136–2145.

[06]    

Grujicic M, Sellappan V, Pandurangan B, Li G, Seyr N, Erdmann M, Holzleitner J. Computational Analysis of Injection-Molding Residual-Stress Development in Direct-Adhesion Polymer-to-Metal Hybrid Body-In-White Components. J Mater Process Tech, 2008; 203: 19–36.

[07]    

Grujicic M, Sellappan V, Arakere G, Seyr N, Obieglo A, Erdmann M, Holzleitner J. The Potential of a Clinch-Lock Polymer Metal Hybrid Technology for Use in Load-Bearing Automotive Components. J Mater Eng Perform, 2009; 18: 893–902.

[08]    

Grujicic M, Sellappan V, He T, Seyr N, Obieglo A, Erdmann M, Holzleitner J. Total Life-Cycle Based Materials Selection for Polymer Metal Hybrid Body-In-White Automotive Components. J Mater Eng Perform, 2009; 18: 111–128.

[09]    

Grujicic M, Sellappan V, Kotrika S, Arakere G, Obieglo A, Erdmann M, Holzleitner J. Suitability Analysis of a Polymer Metal Hybrid Technology Based on High-Strength Steels and Direct Polymer-to-Metal Adhesion for Use in Load-Bearing Automotive Body-In-White Applications. J Mater Process Tech, 2009; 209: 1877–1890.

[10]    

Grujicic M, Sellappan V, Arakere G, Ochterbeck JM, Seyr N, Obieglo A, Erdmann M, Holzleitner J. Investigation of a Polymer Metal Inter-locking Technology for use in Load-bearing Automotive Components. Multidiscip Model Mater Struc, 2010; 6(1): 23–44.

[11]    

Korson C, Stratton D. An Integrated Automotive Roof Module Concept: Plastic-Metal Hybrid and Polyurethane Composite Technology. Proceedings of the 5th SPE Annual Automotive Composites Conference; 2005 Sep 14 –15. Troy, MI. Newport, CT: Society of Plastics Engineers.

[12]    

Zoellner OJ, and Evans JA. Plastic-Metal Hybrid. A New Development in the Injection Molding Technology. Annual Technical Conference of the Society of Plastics Engineers; 2002; San Francisco, CA. Newport, CT: Society of Plastics Engineers. p1–4.

[13]    

Rosato D. 2007. Structurally Sound Plastic/Metal Hybrid Molding Emerging. Available at: http://www.omnexus.com/resources/editorials.aspx?id=16483. Accessed 2012 Aug 14.

[14]    

Leaversuch RD. 2003. Plastic-Metal Hybrids Make Headway On and Off the Road. Available at: http://www.ptonline.com/articles/plastic-metal-hybrids-make-headway-on-and-off-the-road. Accessed 2012 Aug 9.

[15]    

Recktenwald D. Advanced Adhesives Foster Hybrid Structures. Mach Des, 2005; 77(21): 124–126.

[16]    

Awaja F, Gilbert M, Kelly G, Fox B, Pigram PJ. Adhesion of polymers. Prog Polym Sci, 2009; 34: 948–968.

[17]    

Lucchetta G, Marinello F, Bariani PF. Aluminum sheet surface roughness correlation with adhesion in polymer metal hybrid overmolding. CIRP Ann–Manuf Techn, 2011; 60: 559–562.

[18]    

Grujicic M, Sellappan V, Arakere G, Seyr N, Erdmann M. Computational Feasibility Analysis of Direct-Adhesion Polymer-To-Metal Hybrid Technology for Load-Bearing Body-In-White Structural Components. J Mater Process Tech, 2008; 195: 282–298.

[19]    

Grujicic M, Sellappan V, Omar MA, Seyr N, Obieglo A, Erdmann M, Holzleitner J. An Overview of the Polymer-to-Metal Direct-Adhesion Hybrid Technologies for Load-Bearing Automotive Components. J Mater Process Tech, 2008; 197: 363–373.

[20]    

Ramani K, Moriarty B. Thermoplastic Bonding to Metals via Injection Molding for Macro-Composite Manufacture. Polym Eng Sci, 1998; 38: 870–877.

[21]    

Ramani K, Zhao W. The Evolution of Residual Stresses in Thermoplastic Bonding to Metals. Int J Adhes Adhes, 1997; 17(4): 353–357.

[22]    

Ramani K, Tagle J. Process-Induced Effects in Thin-Film Bonding of PEKEKK in Metal-Polymer Joints. Polym composite, 1996; 17(6): 879–886.

[23]    

Shah P. Adhesion of Injection Molded PVC to Silane Primed Steel [thesis]. Cincinnati (OH): University of Cincinnati; 2005.

[24]    

Sasaki H, Kobayashi I, Sai S, Omoto T, Mori K. Direct Adhesion of Nylon Resin to Stainless Steel Plates Coated with Triazine Thiol Polymer by Electropolymerization During Injection-Molding. Jpn J Poly Sci Tech, 1998; 55(8): 470–476.

[25]    

Erickson PW, Pleuddemann EP. Composite Materials 6. New York: Academic Press; 1974.

[26]    

Pleuddemann EP. Silane Coupling Agents. New York: Plenum-Press; 1991.

[27]    

Salladay J, Stevens J, New Business Identification and Development, Private Communication, October 2006.

[28]    

Berry DH, Namkanisorn A. Fracture Toughness of a Silane Coupled Polymer-Metal Interface: Silane Concentration Effects. J Adhesion, 2005; 81: 347–370.

[29]    

Mikulec M, “Feasibility of Automotive Coatings Designed for Direct Adhesion to TPO Materials,” Annual Technical Conference of the Society of Plastics Engineers; 1997; Toronto. Newport, CT: Society of Plastics Engineers.

[30]    

Kondos CA, Kahle CF II. Basecoats with Direct Adhesion to TPO. SAE Technical Paper 980708, 1998. Published: February 23, 1998. DOI:10.4271/980708.

[31]    

Drummer D, Schmachtenberg E, Hülder G, Meister S. MK2—A novel assembly injection molding process for the combination of functional metal surfaces with polymer structures. J Mater Process Tech, 2010; 210: 1852–1857.

[32]    

Marcus SA, inventor; Dow Chemical Company, assignee. Manufacture of Draw-Redraw Cans Using Steel Sheet Material Film Laminated or Extrusion Coated with a High Density Polyethylene Graft Co-polymer. US patent 4,452,375. 1984 June 5.

[33]    

Borges MF, Amancio-Filho ST, dos Santos JF, Strohaecker TR, Mazzaferro JAE. Development of computational models to predict the mechanical behavior of Friction Riveting joints. Comp Mater Sci, 2012; 54: 7–15.

[34]    

Moldflow Plastics Insight, Version 6.0, User Documentation. Moldflow Corporation. Framingham, MA, 2006.

[35]    

Kamal MR, Kenig S. The Injection Molding of Thermoplastics Part I. Theoretical Model. Polym Eng Sci, 1972;12: 294–301.

[36]    

Hieber CA, Shen SF. A Finite-element/Finite-difference Simulation of the Injection-molding Filling Process. J Non-Newton Fluid, 1980; 7: 1–32.

[37]    

Chiang HH, Hieber CA, Wang KK. A Unified Simulation of the Filling and Postfilling Stages in Injection Molding Part 1. Formulation. Polym Eng Sci, 1991; 31: 116–124.

[38]    

Kennedy P. Flow Analysis of Injection Molds. Munich: Hanser; 1995.

[39]    

Crochet MJ, Dupret F, Verleye V. Injection Molding. In: Flow and Rheology in Polymer Composites Manufacturing. S. G. Advani, editor. Amsterdam: Elsevier; 1994. p 415–461.

[40]    

Kietzmann CVL, Van Der Walt JP, Morsi YS. A Free-front tracking algorithm for a control-volume Hele-Shaw method. Int J Numer Meth Eng, 1998; 41: 253–269.

[41]    

Gupta M, Wang KK. Fibers orientation and Mechanical Properties of Short-fiber-reinforced Injection-molded Composites: Simulation and Experimental Results. Polym Composite, 1993; 14: 367–381.

[42]    

Walsh SF. Shrinkage and Warping Prediction for Injection Molded Components. J Reinf Plast Comp, 1993; 12: 769–777.

[43]    

Givler RC, Crochet MJ, Pipes RB. Numerical Predictions of Fibers orientation in Dilute Suspensions. J Compos Mater, 1983; 17: 330–343.

[44]    

Lipscomb GG II, Denn MM, Hur DU, Boger DV. The Flow of Fiber Suspensions in Complex Geometry. J Non-Newton Fluid, 1988; 26: 297–325.

[45]    

Rosenberg J, Denn MM, Keunings R. Simulation of Non-recirculating Flows of Dilute Fiber Suspensions. J Non-Newton Fluid, 1990; 37: 317–345.

[46]    

Zheng R. Boundary Element Methods for some Problems in Fluid Mechanics and Rheology [dissertation]. Sydney (Australia): University of Sydney; 1991.

[47]    

Phan-Thien N, Zheng R, Graham AL. The Flow of a Model Suspension Fluid past a Sphere. J Stat Phys, 1991; 62: 1173–1195.

[48]    

Phan-Thien N, Graham AL. A New Constitutive Model for Fiber Suspensions: Flow Past a Sphere. J Rheol, 1991; 30: 44–57.

[49]    

Altan MC, Güçeri Sİ, Pipes RB. Anisotropic Channel Flow of Fiber Suspensions. J Non-Newton Fluid, 1992; 42: 65–83.

[50]    

Tucker CL III. Flow Regimes for Fiber Suspensions in Narrow Gaps. J Non-Newton Fluid, 1991; 39: 239–268.

[51]    

Chiang HH, Hieber CA, Wang KK. A unified simulation of the filling and postfilling stages in injection molding. Part I: Formulation. Polym Eng Sci, 1991; 31: 116–124.

[52]    

Guell D, Lovalenti M. An examination of assumptions underlying the state of the art in injection molding modeling. Annual Technical Conference of the Society of Plastics Engineers; 1995; Boston. Newport, CT: Society of Plastics Engineers. p.728–732.

[53]    

Rezayat M, Burton TE. A Boundary-integral Formulation for Complex Three-Dimensional Geometries. Int J Numer Meth Eng, 1990; 29: 263–273.

[54]    

Folgar FP, Tucker CL. Orientation Behaviour of Fibers in Concentrated Suspensions. J Reinf Plast Comp, 1984; 3: 98–119.

[55]    

Fan XJ, Phan-Thien N, Zheng R. A Direct Simulation of Fiber Suspensions. J Non-Newton Fluid, 1998; 74: 113–136.

[56]    

Phan-Thien N, Zheng R. Macroscopic Modelling of the Evolution of Fibers orientation During Flow. In: Papathanasiou TD, Guell DC, editors. Flow-Induced Alignment in Composite Materials. Cambridge UK: Woodhead; 1997. p 77–106.

[57]    

Jeffery GB. The Motion of Ellipsoidal Particles Immersed in Viscous Fluid. P R Soc Lond A – Conta, 1922; 102: 161–179.

[58]    

Yamane Y, Kaneda Y, Doi M. Numerical Simulation of Semi-dilute Suspensions of Rodlike Particles in Shear Flow. J Non-Newton Fluid, 1994; 54: 405–421.

[59]    

Baaijens FPT. Calculation of Residual Stress in Injection Molded Products. Rheol Acta, 1991; 30: 284–299.

[60]    

K. M. B. Jansen. Residual Stresses in Quenched and Injection Molded Products. Int Polym Proc, 1994; 9: 82–89.

[61]    

Boitout F, Agassant JF, Vincent M. Elastic Calculation of Residual Stresses in Injection Molding: Influence of Mold Deformation and Pressure in the Liquid. Int Polym Proc, 1995; 10: 237–242.

[62]    

Titomanlio G, Jansen KMB. In-mold Shrinkage and Stress Prediction in Injection Molding. Polym Eng Sci, 1996; 36: 2041–2049.

[63]    

Zoetelief WF, Douven LFA, Ingen-Housz AJ. Residual Thermal Stresses in Injection Molded Products. Polym Eng Sci, 1996; 36: 1886–1896.

[64]    

L. Caspers, VIp, An Integral Approach to the Simulation of Injection Molding [dissertation]. Eindhoven (The Netherlands): Eindhoven University of Technology; 1996.

[65]    

Bushko WC, Stokes VK. Solidification of Thermoviscoelastic Melts Part 1. Formulation of Model Problem. Polym Eng Sci, 1995; 35: 351–364.

[66]    

Bushko WC, Stokes VK. Solidification of Thermoviscoelastic Melts Part 2. Effects of Processing Conditions on Shrinkage and Residual Stresses. Polym Eng Sci, 1996; 35: 365–383.

[67]    

Bushko WC, Stokes VK. Solidification of Thermoviscoelastic Melts. Part 3. Effects of Mold Surface Temperature Differences on Warping and Residual Stresses. Polym Eng Sci, 1996; 36: 322–335.

[68]    

Bushko WC, Stokes VK. Solidification of Thermoviscoelastic Melts. Part 4. Effects of Boundary Conditions on Shrinkage and Residual Stresses. Polym Eng Sci, 1996; 36: 658–675.

[69]    

Bird RB, Armstrong RC, Hassager O. Dynamics of Polymeric Liquids. Volume 1, Fluid Mechanics. 2nd ed., New York: Wiley; 1987.

[70]    

Tanner RI. Engineering Rheology. 2nd ed. London: Oxford Press; 1988.

[71]    

Ferry JD. Viscoelastic Properties of Polymers. 3rd ed. New York: Wiley; 1980.

[72]    

Papathanasiou TD, Guell DC, editors. Flow-induced Alignment in Composite Materials. Cambridge, UK: Woodhead; 1997.

[73]    

Schapery RA. Thermal Expansion Coefficients of Composite Materials Based on Energy Principles. J Compos Mater, 1968, 2: 380–404.

[74]    

Advani SG, Tucker CL III. The Use of Tensors to Describe and Predict Fibers orientation in Short Fiber Composites. J Rheol, 1987; 31: 751–784.

[75]    

Grujicic M, Sellappan V, Arakere G, Ziegert JC, Koçer FY Schmueser D. Multi-Disciplinary Design Optimization of a Composite Car Door for Structural Performance, NVH, Crashworthiness, Durability and Manufacturability. Multidisc Model Mater Struc, 2009; 5: 1–28.

[76]    

Grujicic M, Pandurangan B, d’Entremont BP, Yen C-F Cheeseman BA. The Role of Adhesive in the Ballistic/Structural Performance of Ceramic/Polymer-Matrix Composite Hybrid Armor. Mat Design, 2012; 41: 380–393.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership