ISSN: 2375-3846
American Journal of Science and Technology  
Manuscript Information
 
 
The Use of Bubble Point Test in Membrane Characterisation
American Journal of Science and Technology
Vol.1 , No. 4, Publication Date: Jul. 28, 2014, Page: 140-144
1953 Views Since July 28, 2014, 2888 Downloads Since Apr. 14, 2015
 
 
Authors
 
[1]    

I. M. T. A. Shigidi, Department of Chemical Engineering, College of Engineering, King Khalid University, P.O. Box 9036. Abha 61413, Kingdom of Saudi Arabia; Department of Chemical Engineering, Faculty of Engineering, Al-Neelain University, P.O. Box 10179. Khartoum, Sudan.

 
Abstract
 

The use of the bubble point test was investigated in defining tack etch membranes characteristics. The method applied monitors the gas-liquid interfacial interaction as the gas penetrates the wetted membrane, thus expels the wetting liquid from the pores. Relationships were based on the notion of capillary pressure, as presented in Washburn equation to relate the applied pressure to the corresponding pore’s diameter. Calculations were based on the assumption of perfect cylindrical shapes of the pores as presented by the SEM pictures taken for nuclepore track-etched membranes. Results obtained were in good agreement with the manufacturers rating, hence proving reliability in using the bubble point test in assessing membrane’s pore diameters.


Keywords
 

Bubble Point Test, Membrane Characterisation, Track-Etched Membrane, Pore Size and Pore Size Distribution


Reference
 
[01]    

Cheremisinoff Paul, N. (1995). Solids/liquids separation. Lancaster, Pa., Technomic

[02]    

Calvo, J. I., A. Hernandez, et al. (1995). "Pore Size Distributions in Microporous Membranes: I. Surface Study of Track-Etched Filters by Image Analysis." Journal of Colloid and Interface Science 175(1): 138-150.

[03]    

Calvo, J. I., A. Hernandez, et al. (1995). "Pore Size Distributions in Microporous Membranes II. Bulk Characterization of Track-Etched Filters by Air Porometry and Mercury Porosimetry." Journal of Colloid and Interface Science 176(2): 467-478.

[04]    

Capannelli, G., F. Vigo, et al. (1983). "Ultrafiltration membranes -- characterization methods." Journal of Membrane Science 15(3): 289-313.

[05]    

Gomez Alvarez-Arenas, T. E. (2003). "Air-coupled ultrasonic spectroscopy for the study of membrane filters." Journal of Membrane Science 213(1-2): 195-207.

[06]    

Baltus, R. E. (1997). "Characterization of the pore area distribution in porous membranes using transport measurements." Journal of Membrane Science 123(2): 165-184.

[07]    

Hernandez, A., J. I. Calvo, et al. (1996). "Pore size distributions in microporous membranes. A critical analysis of the bubble point extended method." Journal of Membrane Science 112(1): 1-12.

[08]    

Ju Youn, I., J. Jeong, et al. (1998). "Light transmission study for determination of pore size distribution in microporous membranes." Journal of Membrane Science 145(2): 265-269.

[09]    

Martinez-Diez, L., F. J. Florido-Diaz, et al. (2000). "Characterization of Hydrophobic Microporous Membranes from Water Permeation." Separation Science and Technology 35(9): 1377-1390.

[10]    

Reutov, V. F., S. N. Dmitriev, et al. (2003). "Transmission electron microscopy porometry of etched pore channels in track membranes." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 201(3): 460-464.

[11]    

Venkataraman, K., W. T. Choate, et al. (1988). "Characterization studies of ceramic membranes. A novel technique using a coulter(R) Porometer." Journal of Membrane Science 39(3): 259-271.

[12]    

Jakobs, E. and W. J. Koros (1997). "Ceramic membrane characterization via the bubble point technique." Journal of Membrane Science 124(2): 149-159.

[13]    

Wo, S., X. Xie, et al. (2001). "A statistical model of apparent pore size distribution and drainage capillary pressure." Colloids and Surfaces A: Physicochemical and Engineering Aspects 187-188: 449-457.

[14]    

Wo, S., X. Xie, et al. (2001). "A statistical model of apparent pore size distribution and drainage capillary pressure." Colloids and Surfaces A: Physicochemical and Engineering Aspects 187-188: 449-457.

[15]    

Gumi, T., M. Valiente, et al. (2003). "Characterization of activated composite membranes by solute transport, contact angle measurement, AFM and ESR." Journal of Membrane Science 212(1-2): 123-134.

[16]    

Kwok, D. Y., C. N. C. Lam, et al. (1998). "Measuring and interpreting contact angles: a complex issue." Colloids and Surfaces A: Physicochemical and Engineering Aspects 142(2-3): 219-235.

[17]    

Marmur, A. (1996). "Equilibrium contact angles: theory and measurement." Colloids and Surfaces A: Physicochemical and Engineering Aspects 116(1-2): 55-61.

[18]    

McGuire, K. S., K. W. Lawson, et al. (1995). "Pore size distribution determination from liquid permeation through microporous membranes." Journal of Membrane Science 99(2): 127-137.

[19]    

Mey-Marom, A. and M. G. Katz (1986). "Measurement of active pore size distribution of microporous membranes - a new approach*1." Journal of Membrane Science 27(2): 119-130.

[20]    

Mietton-Peuchot, M., C. Condat, et al. (1997). "Use of gas-liquid porometry measurements for selection of microfiltration membranes." Journal of Membrane Science 133(1): 73-82.

[21]    

Troger, J., K. Lunkwitz, et al. (1998). "Determination of the surface tension of microporous membranes using wetting kinetics measurements." Colloids and Surfaces A: Physicochemical and Engineering Aspects 134(3): 299-304.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership