Vol.2 , No. 3, Publication Date: Apr. 22, 2015, Page: 92-97
[1] | Ashraf Sadat Ghasemi, Dept. Chemistry, Payame Noor University, P.O. Box, 19395-3697, Tehran, Iran. |
[2] | Alireza Soltani, Dept. Chemistry, Payame Noor University, P.O. Box, 19395-3697, Tehran, Iran. |
[3] | Mobin Molla, Department of Petroleum Engineering, Research, Sciences, Islamic Azad University, Tehran, Iran. |
We performed a computational study to calculate the quadrupole coupling constants(CQ) and isotropic and anisotropic chemical shielding (CSI and CSA) parameters in the aluminum doped (Al-doped) single-walled boron nitride nanotube (BNNT) based on the density functional theory (DFT) calculations. The adsorption behavior of the SCN and NCS adsorbed on the external surface of H-capped (6,0) zigzag (Al-doped, BNNT) as a functional group, calculated for the optimized structures, was also studied by using DFT calculations. Geometry optimizations were carried out at the B3LYP/6-31G* level. Comparison with the available data on the pristine Al-BNNT reveals the influence of (Al-BNNT) on the CQ, CSI and CSA parameters of 11-B, 14-N and 15-N atoms in the Al-BNNT structures. For most lattice sites, the magnitude of influence on the CQ, CSI and CSA parameters of the Al-NCS is larger than that of the Al-SCN adsorbed on the external surface of H-capped (6,0) zigzag (Al-doped, BNNT). Similar values of the CQ, CSI and CSA parameters of 27-Al atoms are obtained for zigzag Al-BNNT when the same element is replaced with Al, but the CQ, CSI and CSA parameters are larger for Al when it forms a B-Al-NCS bond than when it forms a B-Al-SCN bond.
Keywords
Density Functional Theory, Boron Nitride Nanotube, NMR, NQR
Reference
[01] | S. Ijima (1991), Nature 354, 56–58. |
[02] | A.S. Ghasemi, F. Aashrafi (2012), Int.J.ChemTech Res. Vol.4, No.4, pp 1295-130. |
[03] | V. Derycke, R. Martel, J. Appenzeller, P. Avouris (2002), Appl Phys Lett 80:2773. |
[04] | C. Liu, YY. Fan, M. Liu, HT. Cong, HM. Cheng, MS. Dresselhaus (1999), Science 286:1127. |
[05] | B. Zurek, J. Autschbach (2004), J. Am Chem Soc 126:13079. |
[06] | A. Nojeh, GW. Lakatos, S .Peng, K.Cho, RFW. Pease (2003), Nano Lett 3:1187. |
[07] | T. Ishii, T. Sato, Y. Sekikawa, M. Iwata, Journal of Crystal Growth 52 (1981) 285. |
[08] | A. Rubio, J.L. Corkill, M.L. Cohen, Physical Review B 49 (1994) 5081. |
[09] | X. Blase, A. Rubio, S.G. Louie, M.L. Cohen, Europhysics Letters 28 (1994) 335. |
[10] | N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl, (1995),Science 269 .966 |
[11] | F. A. Bovey Nuclear Magnetic Resonance Spectroscopy (Academic Press, San Diego, 1988) Academic, San Diego. |
[12] | T. P. Das and E. L. Han Nuclear Quadrupole Resonance Spectroscopy (Academic Press, New York, 1958). |
[13] | L.B. Casabianca, A.C. De Dios, J. Chem. Phys. 128 (2008) 052201. |
[14] | J. Vaara, Phys. Chem. Chem. Phys. 9 (2007) 5399. |
[15] | J.C. Facelli, Concepts Magn. Reson. Part A 20A (2004) 42. |
[16] | G. Wu, S. Dong, R. Ida, N. Reen, J. Am. Chem. Soc. 124 (2002) 1768. |
[17] | M. T. Baei, S. Z. Sayyed Alang, A. V. Moradi, and P. Torabi (2012). J. Mol. Model. 18, 881–889. |
[18] | M. T. Baei, A. V. Moradi, P. Torabi, and M. Moghimi (2011). Monatsh. Chem. 142, 783–788. |
[19] | K. Wolinski, JF. Hinton, P. Pulay (1990), J. Am Chem Soc 112:8251–8260 |
[20] | Mahmoud Mirzaei, MasoudGiahi (2010), J. Physica B 405 3991–3994. |
[21] | P. Pyykko (2001), Mol Phys 99:1617. |
[22] | M. T. Baei, A. V. Moradi, M. Moghimi, and P. Torabi (2011). Comput. Theor. Chem. 967, 179–184. |
[23] | E. Bengu, LD. Marks (2001), Phys Rev Lett 86:2385 |