ISSN Print: 2381-1099  ISSN Online: 2381-1102
International Journal of Geophysics and Geochemistry  
Manuscript Information
 
 
Geology, Petrography and Geochemistry of El-Kahfa Ring Complex, South Eastern Desert, Egypt
International Journal of Geophysics and Geochemistry
Vol.3 , No. 3, Publication Date: May 25, 2016, Page: 25-27
2996 Views Since May 25, 2016, 1430 Downloads Since May 25, 2016
 
 
Authors
 
[1]    

Hussein A. Hegazy, Geology Department, Faculty of Science, Assiut University, Assiut, Egypt.

[2]    

Andrei A. Arzamastsev, Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences, Moscow, Russia.

[3]    

Eman Saad, Geology Department, Faculty of Science, Assiut University, Assiut, Egypt.

 
Abstract
 

El kahfa Ring Complex (ERC) is a member of an alkaline province including complexes of similar size, structure and composition which crop out along the western margin of the Red Sea in Egypt. ERC (5x6 km) occurs as oval intrusion, rising up to 1018 m.a.s.l. at the intersection of latitude 24° 08' 18″and longitude 34° 38' 55″, belongs to the youngest group of Phanerozoic ring complexes having an emplacement age of 92±5Ma (Lutz et al., 1988; Serencsits et al., 1981). It is related to structural lineament trending N 30º W parallel to the Red Sea and was controlled by pre-existing deep crustal lines of weakness in the basement complex. Field investigation revealed that ERC is composed of two intrusive phases, i.e. oldest one represents by essexite gabbros, and the later phase of syenitic rocks. The syenites formed the inner zone are highly sheared undersaturated syenites (i.e. Litchfieldite and cancrinite syenites) grading into quartz syenites, while the outer ring massif is composed of massive alkaline syenites with less of quartz syenites. The extrusive rocks of trachyte, basalt and rhyolite present as plugs, sheets and ring dykes. The mineralogical and chemical features show that these rocks belong to anorogenic interplate A-type alkaline suite (i.e. enriched in alkalis and HFS elements, Nb, Ta, Zr, Hf, Y, HREE) and peralumineous in nature. The Y/Nb and Ce/Nb ratios suggest fractional crystallization of primary source of picritic basalt magma in the asthenospheric mantle. The calculated agpaitic coefficient values show that the alkaline rock samples of El Kahfa area are of miaskitic type with some tendencies to possess an intermediate alkaline affinity. Open-system processes by which nepheline syenitic magma undergo assimilation of silica- rich crustal material (crustal contamination) and fractional crystallization have been suggested. It is believed that under these conditions undersaturated magma evolves across the feldspar join and become oversaturated.


Keywords
 

ERC, Red Sea, Essexite Gabbros, Miaskitic


Reference
 
[01]    

Bailey, D. K., Macdonald, R., 1970. Petrochemical variations among mildly peralkaline (comendite) obsidians from the oceans and continents. Contributions to Mineralogy and Petrology. 28, 340-351.

[02]    

Balashov, Y. A., Glaznev, V. N., 2006. Cycles of alkaline magmatism. Geochemistry International. 44, 274-285.

[03]    

Blatt, H., Tracy, R. J., 1995. Petrology: Igneous, Sedimentary, and Metamorphic. W. H. Freeman, New York.

[04]    

Bonin, B., 2007. A-type granites and related rocks: evolution of a concept, problems and prospects. Lithos. 97, 1-29.

[05]    

Cox, K. G., et al., 1979. The interpretation of igneous rocks. George Allen and Unwin London, Boston.

[06]    

de Gruyter, P., Vogel, T. A., 1981. A model for the origin of the alkaline complexes of Egypt. Nature. 291, 571-574.

[07]    

De Gruyter, P. C., (1983), The petrogenesis and tectonic setting of the Egyptian alkaline complexes. Michigan State University, 1983.

[08]    

Edgar, A. D., 1964. Phase-Equilibrium Relations in the System Nepheline-Albite-Water at 1,000Kg/Cm2. The Journal of Geology. 72, 448-460.

[09]    

EL Ramly, M. F., et al., A petrological study on the central part of Gabal Abu Khruq Ring Complex, South Eastern Desert of Egypt. Vol. 51. Geol Survey Egypt, 1969.

[10]    

EL Ramly, M. F., et al., The alkaline rocks of South-Eastern Egypt. Egyptian Geol. Surv., Vol. 53, 1971.

[11]    

EL Ramly, M. F., Hussein, A. A., 1985. The Ring Complexes of the Eastern Desert of Egypt. J. Afr. Earth Sci. 3, 77-87.

[12]    

Foland, K. A., Henderson, C. M. B., 1976. Application of age and Sr isotope data to the petrogenesis of the Marangudzi ring complex, Rhodesia. Earth and Planetary Science Letters. 29, 291^301.

[13]    

Foland, K. A., et al., 1993. Formation of cogenetic quartz and nepheline syenites. Geochimica et Cosmochimica Acta. 57, 697-704.

[14]    

Fudali, R. F., 1963. Experimental studies bearing on the origin of pseudoleucite and associated problems of alkalic rock systems. Bull. geol. Soc. Am.. 74, 1101-1126.

[15]    

Garson, M. S., Krs, M., 1976. Geophysical and geological evidence of the relationship of Red Sea transverse tectonics to ancient feature. Geologic Soc. Am. Bull.. 87, 169-181.

[16]    

Giret, A., et al., 1980. Amphibole compositional trends in oversaturated alkaline plutonic ring-complexes. Canadian Mineralogist. 18, 481-495.

[17]    

Goldschmidt, V. M., 1954. Geochemistry. Clarendon Press, Oxford.

[18]    

Hamilton, D. L., MacKenzie, W. S., 1965. Phase-equilibrium studies in the system NaAlSiO4 (nepheline)^KAlSiO4 (kalsilite)^ SiO2^H2O. Mineralogical Magazine. 34, 214-231.

[19]    

Harris, C., et al., 1999. Petrology of the alkaline core of the Messum Igneous Complex, Namibia: Evidence for the progressively decreasing effect of crustal contamination. Journal of Petrology 40, 1377-1397.

[20]    

Heier, K. S., 1964. Geochemistry of the nepheline syenite on Stjernoy, North Norway. Norsk Geol. Tidsskr. 44, 205-215.

[21]    

Kogarko, L. N., Petrogenesis. Role of volatiles. In: Sørensen, H., Eds.), The Alkaline Rocks. J. Wiley and Sons, London, 1974, pp. 474-487.

[22]    

Kyle, P. R., 1981. Mineralogy and Geochemistry of a Basanite to Phonolite Sequence at Hut Point Peninsula, Antarctica, based on Core from Dry Valley Drilling Project Drillholes 1, 2 and 3. Journal of Petrology. 22, 451-500.

[23]    

Landoll, J. D., et al., 1994. Nd isotopes demonstrate the role of contamination in the formation of coexisting quartz and nepheline syenites at the Abu Khruq Complex, Egypt. Contributions to Mineralogy and Petrology. 117, 305-329.

[24]    

Lutz, T. M., et al., 1988. The strontium and oxygen isotopic record of hydrothermal alteration of syenites from the Abu Khruq complex, Egypt. Contributions to Mineralogy and Petrology. 98, 212-223.

[25]    

Maniar, P. D., Piccoli, P. M., 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin. 101, 635-643.

[26]    

McKenzie, D., 1985). The extraction of magma from the crust and the mantle. Earth and Planetary Science Letters. 74, 81-91.

[27]    

Middlemost, E. A. K., 1975. The basalt clan. Earth Sci. Rev. 11, 337-364.

[28]    

Miyashiro, A., 1978. Nature of alkaline volcanic series. Contributions to Mineralogy and Petrology. 66, 91-104.

[29]    

Neary, C. R., et al., 1976. Granitic association of North Eastern Sudan. Geol. Soc. Am. Bull. 87, 1501-1512.

[30]    

Nickel, K. G., 1986. Phase equilibria in the system SiO2–MgO–Al2O3–CaO–Cr2O3 (SMACCR) and their bearing on spinel/garnet lherzolite relationships. Neues Jahrbuch fur Mineralogic Abhandlungen 155, 259-287.

[31]    

Pearce, J. A., et al., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol.. 25, 956-983.

[32]    

Peters, T., et al., 1966. The melting of analcite solid solutions in the system NaAlSiO4-NaAlSi3O 8H2O. American Mineralogist. 51, 736753.

[33]    

Serencsits, C. M., et al., 1981. Alkaline ring complexes in Egypt: Their ages and relationship in time. Journal of Geophysical Research: Solid Earth. 86, 3009-3013.

[34]    

Spera, F. J., 1981. Carbon Dioxide in Igneous Petrogenesis II: Fluid dynamics of mantle metasomatic processes. Contrib Mineral Petrol 77, 56-65.

[35]    

Sun, S. S., 1982. Chemical composition and origin of the Earth’s primitive mantle. Geochim. Cosmochim. Acta. 46, 179-192.

[36]    

Sun, S. S., McDonough, W. F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: A. D. Saunders, M. Norry, Eds.), Magmatism in Ocean Basins. Geological Society of London Special Publication, London, 1989, pp. 313e345.

[37]    

Tuttle, O. F., Bowen, N. L., 1958. Origin of Granite in the Light of Experimental Studies in the System NaAlSiO4^KAlSiO4^SiO2^H2O. Geological Society of America, Memoirs. 74.

[38]    

Wilson, M., 1989. Igneous Petrogenesis. Unwin Hyman Ltd., London.

[39]    

Yoder, H. S. J., Tilley, C. E., 1962. Origin of basalt magmas. Journal of Petrology. 3, 342-532.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership