ISSN Print: 2381-1013  ISSN Online: 2381-1021
American Journal of Agricultural Science  
Manuscript Information
 
 
In Vitro Propagation of Sugar Beet Cultivar Frida, Through Encapsulated Different Explants
American Journal of Agricultural Science
Vol.3 , No. 3, Publication Date: May 6, 2016, Page: 27-34
2504 Views Since May 6, 2016, 1280 Downloads Since May 6, 2016
 
 
Authors
 
[1]    

Roba M. Ismail, Gene Transfer Lab, Plant Genetic Transformation Department, Agricultural Genetic Engineering Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt.

[2]    

Wesam M. Raslan, Gene Transfer Lab, Plant Genetic Transformation Department, Agricultural Genetic Engineering Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt.

[3]    

Gihan M. H. Hussein, Gene Transfer Lab, Plant Genetic Transformation Department, Agricultural Genetic Engineering Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt.

 
Abstract
 

Synthetic or artificial seed protocol is a powerful method for production of seed analogues. It relies on in vitro encapsulation of any meristematic tissue by its coating with suitable gelling agents. Here we describe the synthetic seeds production for sugar beet (Beta vulgaris) cv Frida using encapsulation by sodium alginate. Different factors affecting the encapsulation efficiency such as explant type, presence of BA and presence of sucrose were studied. The best combinations for synthetic seed production found to be using of 4% sodium alginate for encapsulation of shoot tip explants in presence of 1.3 mg/l BA or 4% sucrose. In case of adventitious shoots, the best combinations found to be using of 4% sodium alginate with 1.3 mg/l BA, 4% sucrose and 1.2% agar.


Keywords
 

Artificial Seed, Sugar Beet, Adventitious Shoots Sodium Alginate


Reference
 
[01]    

Trifonova, A. and A. Atanassov (1995). Genetic Transformation of Sugar Beet by AgrobacteriumRhizogenes. Biotechnology &Biotechnological Eq., 9:23-26.

[02]    

Krens, F. A.; A. Trifonova; L. C. P. Keizer and R. D. Hall (1996). The effect of exogenously-applied phytohormones on gene transfer efficiency in sugar beet (Beta vulgaris L.). Plant Sci., 116:97-106.

[03]    

Grieve, T. M.; K. M. A. Gartland and M. C. Elliott (1997). Micropropagation of commercially important sugar beet cultivars. Plant Growth Regul, 21:5-18.

[04]    

Saunders, J. W. and C. J. Tsai, (1999). Production of somatic embryos and shoots from sugar beet callus: Effects of abscisic acid, other growth regulators, nitrogen source, sucrose concentration and genotype. In Vitro Cell. Dev. Biol. Plant, 35:18-24.

[05]    

Kinoshita I. (1992). The Production and Use of Artificial Seed, Research Journal of Food and Agriculture, 15(3):6-11.

[06]    

Siong, P. K.; Sadegh M. and Rosna M. T. (2012). Production of Artificial seeds derived from encapsulated in vitro microshoots of cauliflower, Brassica oleracea var. botrytis Romanian, Biotechnological Letters, 17:4 (7549-7556).

[07]    

Murashige T. (1977). Plant cell and organ culture as horticultural practice. ActaHortic, 78:17-30.

[08]    

Kitto, S. L. and J. Janick, (1982). Polyox as an artificial seed coat for asexual embryos. Horticultural Science, 17:448.

[09]    

Gray, D. J. (1987). Synthetic seed technology for the mass cloning of crop plants: problems and prospects. Horti. Sci., 22:795-814.

[10]    

Gray, D. J. and A, Purohit. (1991). Somatic embryogenesis and development of synthetic seed technology. Crit Rev Plant Sci., 10:33-61.

[11]    

Bapat, B. A. and P. S. Rao (1998). Sandalwood plantlets from synthetic seeds. Plant Cell Rep., 7:434-436.

[12]    

Ganapathi, T. R.; P. Suprasanna; V. A. Bapat and P. S. Rao (1992). Propagation of Banana through enhanced shoot tips .Plant Cell Rep, 11:571-575.

[13]    

Ballester, A.; L. V. Janeiro and A. M. Vieitez (1997). Cold storage of shoot cultures and alginate encapsulation of shoot tips of Camellia japonica L. and Camellia reticulate Lindly. SciHortic, 7:67-78.

[14]    

Tsai, C. J. and J. W. Saunders (1999). Encapsulation, germination and conversion of somatic embryos in sugar beet. Journal of Sugar Beet Research, 36(4):11-32.

[15]    

Nower, A. A.; E A. Ali and A. A. Rizkalla (2007). Synthetic seeds of Pear (Pyruscommunis L.) Rootstock storage In vitro, Australian Journal of Basic and Applied Sciences, 1(3):262-270.

[16]    

Ramesh, M.; R. Marx; G. Mathan; S. K. Pandian (2009). Effect of bavistin on in vitro plant conversion from encapsulated uninodeal micro-cuttings of micro-propagated Bacopamonnieri (L) An Ayurvedic Herb. J. Environ. Biol., 30:441-444.

[17]    

Islam, M. S. and M. A. Bari (2012). In vitro regeneration protocol for artificial seed production in an important medical plant Menthaarvensis L. 20:99-108.

[18]    

Rizkalla, A. A.; A. M. Badr-Elden; M. E. Ottai; M. I. Nasr and M. N. M. Esmail (2012). Development of artificial seed technology and preservation in sugar beet. Sugar Tech., 14(3):312-320.

[19]    

Awal, A.; R. M. Taha and N. A. Hasbullah (2007). In vitro formation of synthetic seeds of Begoniaxhiemalis Fotch. Indian J. Environ. Sci. 2:189-192.

[20]    

Nower, A. A. (2014). In Vitro Propagation and Synthetic Seeds Production: An Efficient Methods for Stevia rebaudiana Bertoni, Sugar Tech, 16(1):100-108.

[21]    

Reddy, M. C.; K. S. R. Murthy and T. Pullaiah (2012). Synthetic seeds: A review in agriculture and forestry, African J. of Bio. 11(78), 14254-14275.

[22]    

Trinh, T. H.; P. Ratet; E. Kondorosi; P. Durand; K. Kamaté; P. Bauer and A. Kondorosi (1998). Rapid and efficient transformation of diploid Medicago truncatula and Medicago sativa ssp. falcata lines improved in somatic embryogenesis. Plant Cell Rep., 17:345-355.

[23]    

Zhang, Y. F., S. Yan and Y. Zhang (2011). Factors affecting germination and propagators of artificial seeds of Dendrobium Candidum. International Conference on Agricultural and Biosystems Engineering. Advances in Biomedical Engineering, (1-2):404-410.

[24]    

Lata, H.; S. Chandra; T. Natascha; I. A. Khan and M. A. ElSohly (2011). Molecular analysis of genetic fidelity in Cannabis sativa L. plants grown from synthetic (encapsulated) seeds following in vitro storage. Biotechnol. Lett. 33:2503-2508.

[25]    

Kitto, S. L. and J. Janick (1985). Production of synthetic seeds by encapsulating asexual embryos of carrot. J Am Soc Hortic Sci, 110:277-282.

[26]    

Endress R. (1994). Plant Cell Biotechnology. Springer-verlag, Berlin. 256-269.

[27]    

Jaiswal, V. S.; A. Hussain and U. Jaiwal (2001). Synthetic seed: Prospects and limitations. Current Science, 78(12):1438-1444.

[28]    

Bapat, V. A.; M Mhatre and P.S. Rao (1987). Propagation of Morusindica L. (Mulberry) by encapsulated shoot buds. Plant Cell Rep., 6, 393-395.

[29]    

Kikowska, M. and B. Thiem (2011). Alginate-encapsulated shoot tips and nodeal segments in micropropagation of medicinal plants. A review 57 (4).

[30]    

Tsvetkov, I; L. Jouve and J. F. Hausman (2006). Effect of alginate matrix composition on re-growth of in vitro-derived encapsulated apical microcuttings of hybrid aspen, Biologia Plantarum, 50 (4):722-724.

[31]    

Maqsood, M.; A. Mujib and Z. H. Siddiqui (2012). Synthetic seed development and conversion to plantlet in Catharanthusroseus (L.) G. Don. Biotechnology, 11:37-43.

[32]    

Murthy, K. S. R.; M. C. Reddy and R. Kondamudi (2013). Synthetic seeds – A novel approach for the conservation of endangered C. spiralis wt. and C. pusilla Bangladesh J. Sci. Ind. Res. 48(1), 39-42.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership