ISSN Print: 2381-1013  ISSN Online: 2381-1021
American Journal of Agricultural Science  
Manuscript Information
 
 
Historical Sensitivity to Temperature and Precipitation for Irrigated and Non-irrigated Cotton Yields in the Mississippi Delta
American Journal of Agricultural Science
Vol.3 , No. 1, Publication Date: Mar. 14, 2016, Page: 11-20
2326 Views Since March 15, 2016, 545 Downloads Since Mar. 15, 2016
 
 
Authors
 
[1]    

Toby Ryan FitzSimons, Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, USA.

[2]    

Derrick Oosterhuis, Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, USA.

 
Abstract
 

An investigation of cotton yield between irrigated and non-irrigated fields in Arkansas from 1980 to the present was initiated to determine if large regional effects in yield could be attributed to heat or precipitation stress. Temperature and precipitation data were acquired from weather stations centrally located in three agricultural districts of eastern Arkansas, encompassing most of the cotton growing regions of the state. Cotton yields were obtained from the United States Department of Agriculture’s (USDA), and the National Agricultural Statistics Service (NASS) for both irrigated and non-irrigated fields within the state. Yield relationships were quantified between the months of June, July, and August for maximum and minimal temperature influence on yield, precipitation, as well as decadal trends of historical yield. Analyses determined that Arkansas irrigated fields were most influenced by warmer July temperatures decreasing 47.01 kg/ha-1/°C with increasing maximal and decreasing -51.61 kg/ha-1/°C as minimum temperatures increased. Likewise, non-irrigated yields decreased 56.92 kg/ha-1/°C and 71.94 kg/ha-1/°C as July maximum and minimum temperatures increase. Historically, irrigated cotton yields have averaged near 25% greater than non-irrigated fields since the early 1980’s. Effects of precipitation were limited compared to the influence of temperature. Only non-irrigated yields indicated significant increases for the month of August, increasing by 19.76 kg/ha-1/cm-1. The overall results indicate that irrigated and non-irrigated yields historically parallel, therefore we suggest that overall yield gains are the result of better yielding cultivars and management practices. Furthermore, the results indicated that modern cotton cultivars appear to be just as intolerant to increasing temperatures and mild drought stress as cultivars planted in the past.


Keywords
 

Cotton, Irrigated, Non-irrigated, Historical, Reproduction, Heat stress, Drought, Mississippi Delta


Reference
 
[01]    

Arnold, C. Y. 1960. Maximum-minimum temperatures as a basis for computing heat units. Proc. Am. Soc. Hortic. Sci. 76: 682–692.

[02]    

Ballard, W. W., and D. M. Simpson. 1925. Behavior of cotton planted at different dates in weevil-control experiments in Texas and South Carolina. U. S. Dept. of Agriculture, Washington, D. C.

[03]    

Basal, H., C. W. Smith, P. S. Thaxton, and J. K. Hemphill. 2005. Seedling drought tolerance in upland cotton. Crop Sci. 45(2): 766–771.

[04]    

Baskerville, G. L., and P. Emin. 2015. Rapid estimation of heat accumulation from maximum and minimum temperatures. Ecology 50(3): 514–517.

[05]    

Bengtson, R. L., C. E. Carter, J. L. Fouss, L. M. Southwick, and G. H. Willis. 1995. Agricultural drainage and water quality in Mississippi Delta. J. Irrig. Drain. Eng. 121(4): 292–295.

[06]    

Bilbro, J. D., and L. L. Ray. 1973. Effect of planting date on the yield and fiber properties of three cotton cultivars. Agron. J. 65(4): 606–609.

[07]    

Boykin, D. L., R. R. Carle, C. D. Ranney, and R. Shanklin. 1995. Weather data summary for 1964-1993 Stoneville, MS. Tech. Bull. 201 Mississippi Agric. For. Exp. Station. Mississippi State.

[08]    

Burke, J. J., J. R. Mahan, and J. L. Hatfield. 1988. Crop-specific thermal kinetic windows in relation to wheat and cotton biomass production. Agron. J. 80(4): 553–556.

[09]    

Burke, J. J., and D. R. Upchurch. 1989. Leaf temperature and transpirational control in cotton. Environ. Exp. Bot. 29(4): 487–492.

[10]    

Christiansen, M. N. 1968. Induction and prevention of chilling injury to radicle tips of imbibing cottonseed. Plant Physiol. 43(5): 743–746.

[11]    

Cook, C. G. 1985. Identifying root traits among MAR and non-MAR cotton, Gossypium hirsutum L. cultivars that relate to performance under limited moisture conditions.

[12]    

Dill, G. M., C. A. Cajacob, and S. R. Padgette. 2008. Glyphosate-resistant crops: adoption, use and future considerations. Pest Manag. Sci. 64(4): 326–31.

[13]    

Flanders, B. A., B. Coats, and C. Dunn. 2014. Change in arkansas cotton acreage during 2002-2010. J. ASFMRA: 14–24.

[14]    

Gipson, J. R. 1986. Temperature effects on growth, development, and fiber properties. p. 47–56. In Mauney, J. R., McD. Stewart, J. (eds.), Cotton Physiology. The Cotton Foundation.

[15]    

Guinn, G. 1976. Water deficit and ethylene evolution by young cotton bolls. Plant Physiol. 57(3): 403–5.

[16]    

Gür, A., U. Demirel, M. Özden, A. Kahraman, O. Opur, and O. Çopur. 2010. Diurnal gradual heat stress affects antioxidant enzymes, proline accumulation and some physiological components in cotton (Gossypium hirsutum L.). African J. Biotechnol. 9(7): 1008–1015.

[17]    

Hake, K., and J. Silvertooth. 1990. High temperature effects on cotton. Cott. Physiol. Today 1(10): 1–4.

[18]    

Hunsaker, D., A. Clemmens, and D.. Fangmeier. 1998. Cotton response to high frequency surface irrigation. Agric. Water Manag. 37(1): 55–74.

[19]    

Iqbal, M. J., M. Z. Iqbal, R. S. A. Khan, and K. Hayat. 2005. Comparison of obsolete and modern varieties in view to stagnancy in yield of cotton (G. hirsutum L.). Asian J. Plant Sci. 4(4): 374–378.

[20]    

Iqbal, M. J., O. U. K. Reddy, K. M. El-Zik, and a. E. Pepper. 2001. A genetic bottleneck in the 'evolution under domestication’ of upland cotton Gossypium hirsutum L. examined using DNA fingerprinting. TAG Theor. Appl. Genet. 103(4): 547–554.

[21]    

Jackson, R. D., S. B. Idso, R. J. Reginato, and P. J. Pinter. 1981. Canopy temperature as a crop water stress indicator. Water Resour. Res. 17(4): 1133–1138.

[22]    

Kakani, V. G., K. R. Reddy, S. Koti, T. P. Wallace, P. V. V. Prasad, V. R. Reddy, and D. Zhao. 2005. Differences in in vitro pollen germination and pollen tube growth of cotton cultivars in response to high temperature. Ann. Bot. 96(1): 59–67.

[23]    

Mahan, J. R., B. L. McMichael, and D. F. Wanjura. 1995. Methods for reducing the adverse effects of temperature stress on plants: A review. Environ. Exp. Bot. 35(3): 251–258.

[24]    

Malo, J. P., L. D. Parsch, and N. P. Tugwell. 2000. Arkansas cotton: stagnant yield and increased risk? Spec. Rep. Arkansas Agric. Exp. Stn. 198: 275–278.

[25]    

Maupin, M. A., and N. L. Barber. 2005. Estimated withdrawals from principal aquifers in the United States, 2000. Reston, VA.

[26]    

McMichael, B. L., and J. J. Burke. 1994. Metabolic activity of cotton roots in response to temperature. Environ. Exp. Bot. 34(2): 201–206.

[27]    

McQuigg, James, D., O. H. Calvert, and W. L. Decker. 1965. Using weather information to cut the cost of getting a good stand of cotton in southeast Missouri. np. 835. Columbia, MO.

[28]    

Meredith Jr., W. R. 2002. Factors that contribute to the lack of genetic progress. p. 8–12. In Proceedings of the Beltwide Conference. Atlanta, GA.

[29]    

Nepomuceno, A. L., D. M. Oosterhuis, and J. M. Stewart. 1998. Physiological responses of cotton leaves and roots to water deficit induced by polyethylene glycol. Environ. Exp. Bot. 40: 29–41.

[30]    

O’Shaughnessy, S. A., and S. R. Evett. 2010. Canopy temperature based system effectively schedules and controls center pivot irrigation of cotton. Agric. Water Manag. 97(9): 1310–1316.

[31]    

Oerke, E.-C. 2006. Crop losses to pests. J. Agric. Sci. 144(1): 31–43.

[32]    

Pace, P. F., H. T. Cralle, S. H. M. El-halawany, J. T. Cothren, and S. A. Senseman. 1999. Drought-induced changes in shoot and root growth of young cotton plants. Journla Cott. Sci. 187(May): 183–187.

[33]    

Paterson, A. H., R. K. Boman, S. M. Brown, P. W. Chee, J. R. Gannaway, A. R. Gingle, O. L. May, and C. W. Smith. 2004. Reducing the genetic vulnerability of cotton. Crop Sci. 44: 1900–1901.

[34]    

Pettigrew, W. T. 2004. Moisture deficit effects on cotton lint yield, yield components, and boll distribution. Agron. J. 96(2): 377–383.

[35]    

Pettigrew, W. T. 2008. The effect of higher temperatures on cotton lint yield production and fiber quality. Crop Sci. 48(1): 278–285.

[36]    

Plaut, Z., A. Carmi, and A. Grava. 1996. Cotton root and shoot responses to subsurface drip irrigation and partial wetting of the upper soil profile. Irrig. Sci. 16(3): 107–113.

[37]    

Radin, J. W., L. L. Reaves, J. R. Mauney, and O. F. French. 1992. Yield enhancement in cotton by frequent irrigations during fruiting. Agron. J. 84(4): 551–557.

[38]    

Reddy, R. K., H. F. Hodges, and J. M. Mckinion. 1997. Crop modeling and applications: A cotton example. Adv. Agron. 59: 225–290.

[39]    

Reddy, K. R., H. F. Hodges, J. M. McKinion, and G. W. Wall. 1991. Temperature effects on pima cotton growth and development. Agron. J. 84(2): 237–243.

[40]    

Reddy, K. R., H. F. Hodges, and V. R. Reddy. 1992a. Temperature effects on cotton fruit retention. Agron. J. 84: 26–30.

[41]    

Reddy, K. R., V. R. Reddy, and H. F. Hodges. 1992b. Temperature effects on early season cotton growth and development. Agron. J. 84(2): 229–237.

[42]    

Ritchie, G. L., C. W. Bednarz, P. H. Jost, and S. M. Brown. 2004. Growth and development of the cotton plant. 1252nd ed. The University of Georgia College of Agricultural and Environmental Sciences, Athens, GA.

[43]    

Silvertooth, J. C., P. W. Brown, and J. E. Malcuit. 1991. Basic cotton crop development patterns. Cott. A Coll. Agric. Rep.: 43–49.

[44]    

Singh, R. P., P. V. V. Prasad, K. Sunita, S. N. N. Giri, K. R. Reddy, and Donald L. Sparks. 2007. Influence of high temperature and breeding for heat tolerance in cotton: a review. Adv. Agron. 93(06): 313–385.

[45]    

Snider, J. L., D. M. Oosterhuis, and E. M. Kawakami. 2011a. Diurnal pollen tube growth rate is slowed by high temperature in field-grown Gossypium hirsutum pistils. J. Plant Physiol. 168(5): 441–8.

[46]    

Snider, J. L., D. M. Oosterhuis, D. A. Loka, and E. M. Kawakami. 2011b. High temperature limits in vivo pollen tube growth rates by altering diurnal carbohydrate balance in field-grown Gossypium hirsutum pistils. J. Plant Physiol. 168(11): 1168–75.

[47]    

Snider, J. L., D. M. Oosterhuis, B. W. Skulman, and E. M. Kawakami. 2009. Heat stress-induced limitations to reproductive success in Gossypium hirsutum. Physiol. Plant. 137(2): 125–138.

[48]    

Snipes, C. E., and S. P. Nichols. 2005. Current agricultural practices of the Mississippi Delta. (December): Bulletin 1143.

[49]    

Sullivan, M. E., and W. M. Delp. 2007. How a systems approach to irrigation promotes sustainable water use. p. 145–159. In NBAC Report 24: Water Sustainability in Agriculture.

[50]    

ur Rahman, H., S. A. Malik, and M. Saleem. 2004. Heat tolerance of upland cotton during the fruiting stage evaluated using cellular membrane thermostability. F. Crop. Res. 85(2-3): 149–158.

[51]    

Usman, M., M. Arshad, A. Ahmad, N. Ahmad, M. Zia-Ul-Haq, A. Wajid, T. Khaliq, W. Naseem, Z. Hasnain, H. Ali, and S. Ahmad. 2010. Lower and upper baselines for crop water stress index and yield of Gossypium hirsutum L. under variable irrigation regimes in irrigated semiarid environment. Pakistan J. Bot. 42(4): 2541–2550.

[52]    

Wanjura, D. F., and G. L. Barker. 1985. Cotton lint yield accumulation rate and quality development. F. Crop. Res. 10: 205–218.

[53]    

Wanjura, D. F., E. B. Hudspeth, and J. D. Bilbro. 1967. Temperature-emergence relations of cottonseed under natural diurnal fluctuation. Agron. J. 59(3): 217–219.

[54]    

Wanjura, D. F., and J. R. Mahan. 1994. Thermal environment of cotton irrigated using canopy temperature. Irrig. Sci. 14(4): 199–205.

[55]    

Wendel, J. F., C. L. Brubaker, and A. E. Percival. 1992. Genetic diversity in Gossypium hirsutum and the origin of upland cotton. Am. J. Bot. 79(11): 1291–1310.

[56]    

Werth, J., L. Boucher, D. Thornby, S. Walker, and G. Charles. 2013. Changes in weed species since the introduction of glyphosate-resistant cotton. Crop Pasture Sci. 64(8): 791–798.

[57]    

Wrather, J. A., B. J. Phipps, W. E. Stevens, A. S. Phillips, and E. D. Vories. 2008. Cotton planting date and plant population effects on yield and fiber quality in the Mississippi Delta. J. Cott. 7(2008): 1–7.

[58]    

Zinn, K. E., M. Tunc-Ozdemir, and J. F. Harper. 2010. Temperature stress and plant sexual reproduction: Uncovering the weakest links. J. Exp. Bot. 61(7): 1959–1968.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership