ISSN Print: 2381-0998  ISSN Online: 2381-1005
Journal of Materials Sciences and Applications  
Manuscript Information
 
 
Electropositive Promotion of DC HF CCVD Synthesis of Carbon Nanotubes: A Review
Journal of Materials Sciences and Applications
Vol.6 , No. 1, Publication Date: Nov. 26, 2020, Page: 1-23
1125 Views Since November 26, 2020, 510 Downloads Since Nov. 26, 2020
 
 
Authors
 
[1]    

Jeannot Mane Mane, Department of Mathematics and Physical Sciences, Ecole Nationale Supérieure Polytechnique (National Advanced School of Engineering), University of Yaoundé I, Yaoundé, Cameroon; Basical Scientific Teachings (ESB) Department, Advanced Teachers’ Training College for Technical Education (ENSET), University of Douala, Douala, Cameroon; Departement of Physics, Faculty of Sciences, University of Dschang, Dschang, Cameroon.

[2]    

Nyangono Kouma Jean Michel, Basical Scientific Teachings (ESB) Department, Advanced Teachers’ Training College for Technical Education (ENSET), University of Douala, Douala, Cameroon.

[3]    

Bridinette Thiodjio Sendja, Department of Mathematics and Physical Sciences, Ecole Nationale Supérieure Polytechnique (National Advanced School of Engineering), University of Yaoundé I, Yaoundé, Cameroon.

 
Abstract
 

Ability of electropositive element atoms to promote catalysis by transition metal atoms of carbon nanotubes growth by CVD process, the so called DC HF CCVD is concerned. The starting point and originality is promotion of adsorption of ethylene on transition metal dense face surfaces (Pt(111)) in presence of substrate surface pre-covered with alkali atoms. Promoting effect then being sketched by conversion of adsorption mode from a di- type bonding on the bare substrate surface to a -bonding mode in the presence of pre-covered promotor’s atoms and at their adsorption site vicinity. This promoting behavior induces molecular orbitals positions shifts with increasing alkali coverage as evidenced in UPS and XPS line position changes and variations in relative adsorbed amounts of each species of alkyne as shown by TDS. Results have been understood within theoretical electrostatic models and charge transfer between TM-substrate and promoting atoms, and between promotor and alkyne through the Chatt-Duncanson model. Assuming catalysis of CVD growth process of CNTs by TM particles pre-coverage of a substrate of SiO2/Si(100), the obtained CNTs may be considered to be bonded to TM catalyst spread inside the tubes in a bonding state referred to as STATE1. This supposes top growth mode through VLS mechanism, initiated by pop-corn like lift of catalyst particles under increase of temperature. Growth carried under these conditions leads to nanotubes with a certain size and length distribution. While pre-covering catalyst clusters with alkali atoms prior to CVD process, this would favor interaction between catalyst and promotor first, inducing strong charge transfer from alkali towards TM particle, thus weakening the next interaction between the synthetized nanotube and resulting «promoted catalyst». Obtained nanotube structure in a bonding state referred to as STATE2 would be more weakly bonded to the «catalyst», compared to STATE1. As well, overall CNTs height should then be a beet shortened compared to the first case. Expected experimental results may be checked through DCD model and vibrational spectroscopies through the eventual shift of band transitions occurring. The same may be done in XPS for s-resonance line position shifts. Expected is easier release of catalyst particles in the course of CNTs purification aiming specific applications such as hydrogen storage. The work may have some implications in device implementation implicating CNTs defects. Experimental applications may follow.


Keywords
 

Carbon Nanotubes, Promotion of DC HF CCVD of CNTs, Charge Transfer Promotor-TM and TM-C, DCD Model, Electrostatic Models, Defects


Reference
 
[01]    

Iijima, S. (1991) Helical Microtubules of Graphitic Carbon. Nature, 354, 56-58. http://dx.doi.org/10.1038/354056a0

[02]    

Melechko A V, Merkulov V I, MacKnight T E, Guillorn M A, Klein K L, Lowndes D H and Simpson M L, 2005, J. Appl. Phys. 97 041301.

[03]    

Groening, O.; Kuttel, O. M.; Emmenegger, C.; Groening, P. and Schlapbach, L. (1999) Field Emission Properties of Carbon Nanotubes. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 18, 665. http://dx.doi.org/10.1116/1.591258

[04]    

Wei, Y., Xie, C., Dean, K. A. and Coll, B. F. (2001) Stability of Carbon Nanotubes under Electric Field Studied by Scanning Electron Microscopy. Applied Physics Letters, 79, 4527-4529. http://dx.doi.org/10.1063/1.1429300

[05]    

Mane Mane, J., Thiodjio Sendja, B., Eba Medjo, R. (2015). Charge Transfer Transition Metal-Carbon at the Tips of CCVD Carbon Nanotubes Within the DCD Model. Journal of Materials Sciences and Applications, 1 (5): 239-255. (http://www.aascit.org/journal/jmsa)

[06]    

Chiou, J. W., Yueh, C. L., Jan, J. C., Tsai, H. M., Pong, W. F., et al., (2002), Electronic Structure of the Carbon Nanotube Tips Studied by X-Ray-Absorption Spectroscopy and Scanning Photoelectron Microscopy, Applied Physics Letters, 81, 4189. http://dx.doi.org/10.1063/1.1523152

[07]    

Rosenberg, R. A., Love, P. J. and Rehn, V. (1986) Polarisation-Dependant Near-Edge X-Ray-Absorption Fine Structure of Graphite, Physical Review B, 33, 4034-4037. http://dx.doi.org/10.1103/PhysRevB.33.4034

[08]    

Mane Mane J., Le Normand F., Eba Medjo R., Cojocaru C. S., Ersen O., Senger A., Laffon C., Thiodjio Sendja B., Mbane Biouele C., Ben-Bolie G. H., Owono Ateba P., Parent P., Alignment of Vertically Grown Carbon Nanostructures Studied by X-Ray Absorption Spectroscopy, Materials Sciences and Applications, 2014, 5, 966-983.

[09]    

Eba Medjo R., Mane Mane J., Thiodjio Sendja B., XANES and Complementary Microscopy Studies of Carbon Nanostructure, LAP LAMBERT Academic Publishing (2015-02-02) - ISBN-978-3-659-66458-8.

[10]    

Comelli, G., Stohr, J., Jark, W. and Pate, B. B. (1988) Extended X-Ray-Absorption Fine-Structure Studies of Diamond and Graphite. Physical Review B, 37, 4383-4389. http://dx.doi.org/10.1103/PhysRevB.37.4383

[11]    

Fayette, L., Marcus, B., Mermoux, M., Tourillon, G., Parent, P., Laffon, K. and Le Normand, F. (1998) Local Order in CVD Diamond Films: Comparative Raman, X-Ray-Diffraction and X-Ray-Absorption Near-Edge Studies, Physical Review B, 57, 14123-14132. http://dx.doi.org/10.1103/Phys. Rev. B., 57.14123.

[12]    

Mubumbila, N., Bouchet-Favre, B., Godon, C., Marhic, C., Angleraud, B., Tessier, P. Y. and Minea, T. (2004) EELS and NEXAFS Structural Investigations on the Effects of the Nitrogen Incorporation in a-CNx Films Deposited by R. F. Magnetron Sputtering. Diamond and Related Materials, 13, 1433-1436. http://dx.doi.org/10.1016/j.diamond.2003.11.055

[13]    

Coffman, F. L., Cao, R., Pianetta, P. A., Kapoor, S., Kelly, M. and Terminello, L. J. (1996) Near-Edge X-Ray Absorption of Carbon Materials for Determining Bond Hybridization in Mixed sp2/sp3 Bonded Materials., Applied Physics Letters, 69, 568-570. http://dx.doi.org/10.1063/1.117789

[14]    

Enouz, S., Bantignies, J. L., Babaa, M. R., Alvarez, L., Parent, P., Le Normand, F., Stéphan, O., Poncharal, P., Loiseau, A. and Doyle, B. P. (2007) Spectroscopic Study of Nitrogen Doping of Multi-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 7, 3524-3527. http://dx.doi.org/10.1166/jnn.2007.839

[15]    

Eba Medjo R., Thiodjio Sendja B., Mane Mane J. and Owono Ateba P., “A Study of Carbon Nanotube Contamination by XANES Spectroscopy,” Physica Scripta, Vol. 80, No. 4, 2009, Article ID: 045601.

[16]    

Banerjee, S., Hemraj-Benny, T., Sambavisan, S., Fischer, D. A., Misewich, J. A. and Wong, S. S. (2005) Near-Edge X-Ray Absorption Fine Structure Investigations of Order in Carbon Nanotube-Based Systems. The Journal of Physical Chemistry B, 109, 8489-8495., http://dx.doi.org/10.1021/jp047408t

[17]    

Mane Mane, J., Thiodjio Sendja, B., Eba Medjo, R., (2015), Contribution of Carbon Nanotubes Cap to XAS Signal, Journal of Materials Sciences and Applications, 1 (5): 195-220. (http://www.aascit.org/journal/jmsa)

[18]    

Mane Mane, PhD. Thesis in Material Science and Engineering, 1993, The University of Nancy I, Nancy, France.

[19]    

Dewar, M. Bull. Soc. Chim. Fr. 1951, 18, C79.

[20]    

Chatt, J. and Duncanson, L. A. 1953 Olefin co-ordination compounds. Part III. Infra-red spectra and structure: attempted preparation of acetylene complexes, J. Am. Chem. Soc., 75 2939 doi: 10.1039/JR9530002939.

[21]    

Stuve, E. M.; Madix, R. J.; Brundle, C. R., Surf. Sci., 1985, 152/153, 532.

[22]    

Stuve, E. M.; Madix, R. J., J. Phys. Chem., 1985, 89, 3183.

[23]    

Dravid, V. P., Lin, X., Wang, Y., Wang, X. K., Yee, A., Ketterson, J. B. and Chang, R. P. H. (1993) Buckytubes and Derivatives: Their Growth and Implications for Buckyball Formation. Science, 259, 1601-1602.

[24]    

Eba Medjo R. and C. N. Synthesis, “Carbon Nanotubes Applications on Electron Devices,” In: J. M. Marulanda, Ed., Carbon Nanotubes Applications on Electron Devices, InTech, 2011, pp. 4-36. http://www.intechopen.com/books/carbon-nanotubes-applications-on-electron-devices/carbon-nanotube-synthesis

[25]    

Lang, N. D., Holloway S. and NØrskov, J. H. (1985) Surf. Sci. 150 24.

[26]    

NØrskov, J. K., Holloway, S. and Lang, N. D. (1985) J. Vac. Sci. Technol. A 3 1668.

[27]    

Kroto H. W., Heath J. R., O’Brien S. C., Curl R. F. and Smalley R. E., “C60: Buckminsterfullerene,” Nature, Vol. 318, No. 6042, 1985, pp. 162-163. http://dx.doi.org/10.1038/318162a0

[28]    

Eba Medjo R., Thiodjio Sendja B. and Mane J., Curvature, hybridization and contamination of carbon nanostructures analysis using electron microscopy and XANES spectroscopy, Materials Sciences and Applications, 2014, 5, 95-103.

[29]    

Martinez A. and Yamashita S., “Carbon Nanotube-Based Photonic Devices: Applications in Nonlinear Optics,” In: J. M. Marulanda, Ed., Carbon Nanotubes Applications on Electron Devices, InTech, 2011, pp. 367-386. http://www.intechopen.com/books/carbon-nanotubesapplications-on-electron-devices/carbon-nanotube-based-photonic-devices-applications-in-nonlinear-optics

[30]    

Dresselhaus, M. S., Dresselhaus, G. and Avouris, P. (2001) Carbon Nanotubes: Synthesis, Structure, Properties and Applications. Springer, Berlin, 29. http://dx.doi.org/10.1007/3-540-39947-X

[31]    

Mane Mane J., Cojocaru C. S., Barbier A., Deville J. P., Jean B., Metzger T. H., Thiodjio Sendja B. and Le Normand F., GISAXS study of the alignment of oriented carbon nanotubes grown on plain SiO2/Si(100) substrates by a catalytically enhanced CVD process, Phys. Stat. Sol. (a), vol. 204, N° 12, pp. 4209-4229 (2007) / DOI 10.1002/pssa. 200723201.

[32]    

Chatt J., Duncanson L. A., Venanzi L. M., J. Chem. Soc., 1955, 4456-4460 doi: 10.1039/JR9550004456.

[33]    

Cojocaru, C. S., Senger, A. and Le Normand, F. (2006) A Nucleation and Growth Model of Vertically-Oriented Carbon Nanofibers or Nanotubes by Plasma-Enhanced Catalytic Chemical Vapor Deposition, Journal of Nanoscience and Nanotechnology, 6, 1331-1338. http://dx.doi.org/10.1166/jnn.2006.144

[34]    

Costel Sorin Cojocaru, Ph.D Thesis, The University Louis Pasteur, Strasbourg I, Strasbourg, France, 2003.

[35]    

Suzuki, S., Watanabe, Y., Kiyokura, T., Nath, K. G., Ogino, T., Heun, S., Zhu, W., Bower, C. and Zhou, O., (2001), Electronic Structure at Carbon Nanotube Tips Studied by Photoemission Spectroscopy. Physical Review B, 63, 1-7.

[36]    

Suzuki, S., Watanabe, Y., Ogino, T., Heun, S., Gregoratti, L., Barinov, A., Kaulich, B., Kiskinova, M., Zhu, W., Bower, C. and Zhou, O. (2002) Electronic Structure of Carbon Nanotubes Studied by Photoelectron Spectromicroscopy, Physical Review B, 66, 1-4.

[37]    

Kroto, H. W., The stability of Fullerene Cn (n= 24, 28, 32, 50, 60 and 70), Nature, 329, 529, 1987.

[38]    

Cassuto, A., Mane Mane, Hugenschmidt, M., Dolle, P. and Jupille J. (1990) The effect of K, Cs and 0 atoms on ethylene adsorption on the Pt(111) surface, Surface Science, 237 63-71.

[39]    

Cassuto, A., Mane Mane., Kronneberg, V. and J. Jupille. (1991) Molecular orbital shifts of T-bonded ethylene adsorbed on Pt(111) in the presence of potassium atoms, Surface Science, 251/252 1133-1137.

[40]    

Cassuto, A., Mane Mane., and J. Jupille. (1991) Ethylene monolayer and multilayer on Pt(111.) below 52 K: determination of bond lengths by near-edge X-ray fine structure, Surface Science, 249 8-14.

[41]    

Cassuto, A., Schmidt, S. and Mane Mane. (1993) The interaction of potassium submonolayers adsorbed on Pt(111) with oxygen and the adsorption of ethylene on the resulting modified surfaces: a TDS and UPS study, Surface Science, 284 273-280.

[42]    

Cassuto, A., Mane Mane., Tourillon, G., Parent, P., and Jupille, J. (1993) Compared bonding geometries of C2H4 and C3H6 on K-covered Pt(111) surfaces, Surface Science, 287/288 460-464.

[43]    

Kesmodel, L. L., Dubois, L. H. and. Somorjai, G. A. (1978) Chem. Phys. Lett. 56 267.

[44]    

Kesmodel, L. L., Dubois, L. H. and. Somorjai, G. A. (1979) J. Chem. Phys. 70 2180.

[45]    

Demuth, J. E., (1979) Surf. Sci. 80 367.

[46]    

Canning, N. D. S., Baker, M. D. and Chesters, M. A. (1981) Surf. Sci. 111 441.

[47]    

Baro, A. M. and Ibach, H. (1981) J. Chem. Phys. 74 4194.

[48]    

Steininger, H., Ibach, H. and Lehwald, S. (1982) Surf. Sci. 117 685.

[49]    

Salmeron, M. and. Somorjai, G. A (1982) J. Phys. Chem. 86 341.

[50]    

Albert, M. R., Sneddon, L. C., Eberhardt, W., Greuter, F., Gustafsson, T. and Plummer, W. (1982) Surf. Sci. 120 19.

[51]    

Freyer, N., Pirug, G. and Bonzel, H. P. (1983) Surf. Sci. 125 327.

[52]    

Creighton, J. R. and White, J. M. (1983) Surf. Sci. 129 327.

[53]    

Zaera, F. and Somorjai, G. A. (1984) J. Am. Chem. Soc. 106 2288.

[54]    

Koestner, R. J., Stöhr, J., Gland, J. L. and. Horseley, J. A. (1984) Chem. Phys. Lett. 105 332; Horseley, J. A., Stöhr, J. and Koestner, R. J. (1985) J. Chem. Phys. 83 3146.

[55]    

Creighton, J. R., Ogle, K. M. and White, J. M. (1984) Surf. Sci. 138 L137.

[56]    

Davis, SM., Zaera, F., Gordon, B. E. and Somorjai, G. A. (1985) J. Catal. 92 240.

[57]    

Godbey, D.. Zaera, F., Yeates R. and Somorjai, G. A. (1986) Surf. Sci. 167 150.

[58]    

Ogle, H. M., Creighton, J. R., Akhter, S. and White, J. M. (1986) Surf. Sci. 169 246.

[59]    

Yu, R. and Gustafsson, T. (1987) Surf. Sci. 182 L234.

[60]    

Malik, I. J., Brubaker, M. E., Moshin S. B. and Trenary, M. (1987) J. Chem. Phys. 87 5554.

[61]    

Zhou, X. L., Zhu, X. Y. and White, J. M. (1988) Surf. Sci. 193 387.

[62]    

Malik, I. J., Agrawai, V. K. and Trenary, M. (1988) J. Chem. Phys. 89 3861.

[63]    

Gland, J. L., Zaera, F., Fischer, P., Carr, R. and E. B. Kollin, (1988) Chem. Phys. Lett. 151 227.

[64]    

Hugenschmidt, M. B., Dolle, P., Jupille, J. and Cassuto, A. (1989) J. Vac. Sci. Technol. A 7 3312.

[65]    

Barteau, M. A., Broughton, J. Q. and Menzel, P. 1984 Appl. Surf. Sci. 19 92.

[66]    

Windham, R. G., Bartram, M. E. and Keel, B. E. (1987) J. Vac. Sci. Technol. A 5 457.

[67]    

Windham, R. G., Bartram, M. E. and Koel, B. E. (1988) J. Phys. Chem. 92 2862.

[68]    

Redhead, P. A. (1962) Vacuum 12 203.

[69]    

Felter, T. E. and Weinberg, W. H. (1981) Surf. Sci. 103 265.

[70]    

Ibach, H. and Lehwald, S. (1978) J. Vac. Sci. Technol. 15 407.

[71]    

Herzberg, G. (1945), Molecular Spectra and Molecular Structure, II. Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand-Reinhold, New York,) p. 326.

[72]    

Turner, D. W., Baker, C., Baker, A. D. and Brundle C. R. (1970) (Wiley-Interscience, New York) p. 179.

[73]    

Jorgensen W. L. and Salem, L. (1973) The Organic Chemist’s Book of Orbitals (Academic Press, New York).

[74]    

Bonzel, H. P. (1988) Surf. Sci. Rep. 8 43.

[75]    

Kudo, M., Garfunkel, E. L. and Somorjai, G. A. (1985) J. Phys. Chem. 89 3207.

[76]    

Wandelt, K. (1984) J. Vac. Sci. Technol. A 2 802.

[77]    

Lang, N. D. and Williams, A. R. (1982) Phys. Rev. B 25 2940.

[78]    

Markert, K. and Wandelt, K. (1985) Surf. Sci. 159 24.

[79]    

Mullins, D. R. White, J. M. and Luftman, H. S. (1985) Surf. Sci. 160 70.

[80]    

Lee, J. Hanrahan, C. Arias, J. Martin, R. M. and Metiu, H. Surf. Sci. 161 (1985) L543.

[81]    

Onellion, M. and Erskine, J. L. (1986) Surf. Sci. 177 1983.

[82]    

Mullins, D. R., White, J. M. and Luftman, H. S. (1987) Surf. Sci. 167 39.

[83]    

Wimmer, E., Fu, C. L. and Freeman, A. J. (1985) Phys. Rev. Lett. 55 2618.

[84]    

Kelemen, S. R. and Fisher, T. E. (1981) Surf. Sci. 102 45.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership