Vol.5 , No. 1, Publication Date: Mar. 6, 2019, Page: 1-8
[1] | Prasanta Kumar Panda, Materials Science Division, CSIR – National Aerospace Laboratories, Bengaluru, India. |
[2] | Benudhar Sahoo, Materials Science Division, CSIR – National Aerospace Laboratories, Bengaluru, India. |
Pure drinking water management is a biggest challenge due to contamination with pathogens and toxic chemicals from industries and manmade pollution caused by growth of population and industrialization. The presence of pathogens in the form ofminute biological organisms such as bacteria, virus, protozoa and algae in water causes epidemics. Although, various techniques have been used for purification of water, the membrane based filtration technology considered as most suitable for removal of pathogens. Electrospun nanofiber membranes (ENM) are highly suitable for water filtration due to presence of large number of nano sized poreswith interconnected pore structure that helps permeability for water filtration and rejection of nano sized particles and pathogens. Electrospinning is a versatile technique used for preparation of nanofibermembranes in the form of cloths / nets etc. with high level of porosity and surface area. In this article, attempts have been made to review the removal of pathogens from water using electrospunnanofiber membranes with their surface and bulk modification. Effect of various pathogen killing elements such as silver, zinc oxide etc. mixed with electrospining polymer solution for preparation of functionalized nanofiber membranes was discussed. Also, preparation of PAN nanofiber membrane in CSIR-NALand its suitability for removal of e-coli bacteria from water was discussed.
Keywords
Water Filtration, Pathogens, Electrospunnanofiber Membrane (ENMs), Electrospinning
Reference
[01] | UNICEF Publication, Progress on sanitation and drinking-water - 2014 update, May 2014, ISBN 978 92 4 150724 0. |
[02] | S. Baruah, M. N. Khan and J. Dutta, “Perspectives and applications of nanotechnology in water treatment”, Environmental Chemistry Letters, 14, 1-14 (2016). |
[03] | L. Madhura, S. Kanchi, M. I. Sabela, S. Singh, K. Bisetty and Inamuddin, “Membrane technology for water purification”, Environmental Chemistry Letters, 16 343-365 (2018). |
[04] | D. Stalter, E. O. Malley, U. Gunten and B. I. Escher, “Fingerprinting the reactive toxicity pathways of 50 drinking water disinfection by-products”, Water Research, 91, 19-30 (2016). |
[05] | K. Z. Fu, J. Li, S. Vemula, B. Moe and X-F. Li, “Effects of halobenzoquinone and haloacetic acid water disinfection byproducts on human neural stem cells”, J. Environ. Sci., 58, 239-249 (2017). |
[06] | C. Cortés and R. Marcos, “Genotoxicity of disinfection byproducts and disinfected waters: A review of recent literature”, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 831, 1-12 (2018). |
[07] | M. M. A. Shirazi, A. Kargari, S. Ramakrishna, J. Doyle, M. Rajendrian and P. Rameshbabu, “Electrospun Membranes for Desalination and Water/Wastewater Treatment: A Comprehensive Review”, J. Membr. Sci. Res., 3, 209-227 (2017). |
[08] | H. Voisin, L. Bergström, P. Liu and A. P. Mathew, “Nanocellulose-Based Materials for Water Purification”, Nanomaterials, 7, 57 (2-18) 2017. |
[09] | S. J. Pandey, V. Jegatheesan, K. Baskaran, and L. Shu, “Fouling in reverse osmosis (RO) membrane in water recovery from secondary effluent: a review,” Rev. Environ. Sci. Biotech. 11, 125–145 (2012). |
[10] | R. S. Barhate, and S. Ramakrishna, “Review: Nanofibrous filtering media, Filtration problemsand solutions from tiny materials,” J. Membr. Sci., 296, 1–8 (2007). |
[11] | G. Ward, “Nanofibres: media at the nanoscale,” Filtr. Sep. 42, 22-24 (2005). |
[12] | P. K. Panda, “Ceramic nanofibers by electrospinning technique: a review,” Trans. Ind. Ceram. Soc., 66, 65-76 (2008). |
[13] | D. Li, J-T McCann, and Y. N. Xia, “Electrospinning: A simple and versatile technique for producing ceramic nanofibers and nanotubes. J. Am. Ceram. Soc., 89, 1861–1869 (2009). |
[14] | S. A. Theron, A. L. Yarin, E. Zussman, and E. Kroll, “Multiple jets in electrospinning: experiment and modelling,” Polym. 46, 2889-2899 (2005). |
[15] | P. K. Panda, and B. Sahoo, “Synthesis and applications of electrospunnanofibers- a review,” in NKNavaani, SSinha, JN Govil (ed), Nanotechnology: Fundamentals and Applications. Studium Press LLC, USA, pp. 399-416 (2013). |
[16] | W. Sigmund, J. Yuh, H. Park, V. Maneeratana et al., “Processing and structure relationships in electrospinningof ceramic fiber systems,” J. Am. Ceram. Soc., 89, 395-407 (2006). |
[17] | T. A. Nguyen, S. Park, J-B. Kim, T. K. Kim, G. H. Seong, J. Choo, and Y. S. Kim, “Polycrystalline tungsten oxide nanofibers for gas-sensing applications,” Sens. Act. B., 160, 549– 554 (2011). |
[18] | P. K. Panda, and S. Ramakrishna, “Electrospinning of alumina nanofibers using different precursors,” J. Mater. Sci. 42, 2189-2193 (2007). |
[19] | R. Meyer, T. Shrout, and S. Yoshikawa, “Lead zirconatetitanate fine fibers derived from alkoxide-based sol–gel technology,” J. Am. Ceram. Soc. 81, 861–863 (1998). |
[20] | B. Sahoo and P. K. Panda, “Preparation and characterization of BaTiO3 nanofibers by electrospinning technique,” Ceram. Int., 38, 5189–5193 (2012). |
[21] | X. H. Yang, C. L. Shao, Y. C. Liu, R. X. Mu, and H. Y. Guan, “Nanofibers of CeO2 via an electrospinning technique,” Thin Solid Film, 478, 228-231 (2005). |
[22] | P. K. Panda, “Preparation and characterization of samariananofibers by electrospinning,” Ceram. Int., 39, 4523-4527 (2013). |
[23] | Y. Dai, W. Liu, E. Formo, Y. Sun and Y. Xia, “Ceramic nanofibers fabricated by electrospinning and their applications in catalysis, environmental science, and energy technology,” Polym. Adv. Techn., 22, 326-338 (2011). |
[24] | B. Sahoo, and P. K. Panda, “Synthesis and characterization of Mn3O4 nanofibers by electrospinning technique,” J. Adv. Ceram., 2, 26-30 (2013). |
[25] | M. Chandraiah, B. Sahoo, and P. K. Panda, “Preparation and characterization of SnO2 nanofibers by electrospinning. Trans. Ind. Ceram. Soc., 73, 266-269 (2014). |
[26] | R. Balamurugan, S. Sundarrajan, and S. Ramakrishna, “Recent trend in nanofibersand their suitability for air and water filtration,” Membranes, 1, 232–248 (2011). |
[27] | C. Feng, K. C. Khulbe, T. Matsuura, S. Tabe, and A. F. Ismail, “Preparation and characterization of electro-spun nanofiber membranes andtheir possible applications in water treatment,” Sep. Pur. Techn., 102, 118–135 (2013). |
[28] | S. M. Alipoura, M. Nouria, J. Mokhtaria and S. H. Bahrami, “Electrospinning of poly (vinyl alcohol)–water-soluble quaternized chitosan derivative blend,” Carbohydrate Res., 344, 2496-2501 (2009). |
[29] | S. Chuangchote, and P. Supaphol, “Fabrication of aligned poly (vinyl alcohol) nanofibers by electrospinning,” Nanosci. Nanotechn., 6, 125-129 (2006). |
[30] | Y. Zhang, X. Huang, B. Duan, B. Wu, S. Li, and X. Juan, “Preparation of electrospunchitosan/poly (vinyl alcohol) membranes,” Colloid. Polym. Sci., 285, 855–863 (2007). |
[31] | S. Kaur, R. Barhate, S. Sundarrajan, T. Matsuura, and S. Ramakrishna, “Hot pressing of electrospun membrane composite and its influence on separation performance on thin film compositenanofiltration membrane,” Desalination, 279, 201–209 (2011). |
[32] | Y. Mei, C. Yao, K. Fan, and X. Li, “Surface modification of polyacrylonitrilenanofibrousmembranes with superior antibacterial and easy-cleaning properties through hydrophilic flexible spacers.” J. Membr. Sci., 417–418, 20–27 (2012). |
[33] | S. N. Veereshgouda, and P. K. Panda, Electrospinning of PolyacrylonitrileNanofiber Membrane for Bacteria Removal, J. Mater. Sci. Applications, 4, 68-74 (2018). |
[34] | M. Ignatova, N. Manolova, and I. Rashkov, “Electrospinning of poly (vinylpyrrolidone)-iodine complex and poly (ethylene oxide)/poly (vinyl pyrrolidone)-iodine complex-a prospective route to antimicrobial wound dressing materials,” Euro. Polym. J., 43, 1609-1623 (2007). |
[35] | N. E. Zander, M. Gillan and D. Sweetser, “Recycled PET Nanofibers for Water Filtration Applications”, Materials, 9, 247 (1-10) 2016. |
[36] | R. A. Razali, Y. Lokanathan, S. R. Chowdhury, A. Saim, and R. H. Idrus, “Physicochemical and Structural Characterization of Surface Modified Electrospun PMMA Nanofibre,” Sains Malaysiana, 47, 1787–1794 (2018). |
[37] | A. E. Childress et al., “Evaluation of Membrane Characterization Methods,” Publisher: Water Research Foundation, Colorado, USA 2012, www.waterRF.org. |
[38] | A. V. Delgado, F. G. Caballero, R. J. Hunter, L. K. Koopal, and J. Lyklema, “Measurement and interpretation of electrokinetic phenomena,” Pure Appl. Chem., 77, 1753-1805 (2005). |
[39] | W. He, Z. W. Ma, T. Yong, W. E. Teo, and S. Ramakrishna, “Fabrication of collagen coated biodegradable polymer nanofiber mesh and its potential for endothelical cells growth,” Biomater., 26, 7606-7615 (2005). |
[40] | L. G. Mobarakeh, D. Semnani, and M. Morshed, “A novel method for porositymeasurement of various surface layers ofnanofibers mat using image analysis fortissue engineering applications,” J. Appl. Polym. Sci., 106, 2536-2542 (2007). |
[41] | A. Jena, and K. Gupta, “Pore volume of nanofiber nonwovens,” Int. Nonwoven. J., 25, 25-30 (2005). |
[42] | S. Sreedhara, and N. R. Tata, “A novel method for measurement of porosityinnanofiber mat using pycnometer in filtration,” J. Eng. Fiber. Fabric., 8, 132-137 (2013). |
[43] | S. Kaur, R. Gopal, W. Ng, S. Ramakrishna, and T. Matsuura, “Next-generation fibrous media for water treatment,” MRS bulletin, 33, 21-26 (2008). |
[44] | S. Aerts, A. Vanhulsel, A. Buekenhoudt, H. Weyten, et al., “Plasma-treated PDMS-membranes in solvent resistantnanofiltration: Characterization and study of transport mechanism,” J. Membr. Sci., 275, 212–219 (2006). |
[45] | L. Setyadhi, and J. C. Liu, “Oxidation–microfiltration removal of Fe (II) from water,” Desalination Water Treat., 51, 374–383 (2013). |
[46] | H. You, X. Li, Y. Yang, B. Wang et al., “High flux lowpressure thin film nanocomposite ultrafiltration membranes based on nanofibrous substrates,” Sep. Purif. Techn., 108, 143–151 (2013). |
[47] | B. C. Kim, S. Nair, J. Kim, and J. H. Kwak et al., “Preparation of biocatalyticnanofibers with high activity and stability via enzyme aggregate coating on polymernanofibers,” Nanotechn., 16, S382–S388 (2005). |
[48] | A. Goethals, T. Mugadza, Y. Arslanoglu, R. Zugle et al. “Polyamide nanofiber membranes functionalized with zincphthalocyanines,” J. Appl. Polym. Sci., 131, 40486 (1-7) (2014). |
[49] | F. A. Sheikh, M. A. Kanjwal, S. Saran, W. J. Chung, and H. Kim, “Polyurethane nanofibers containing copper nanoparticles as future materials,” Appl. Surf. Sci., 257, 3020-3026 (2011). |
[50] | D. Li, J. T. McCann, and Y. N. Xia, “Electrospinning: A simple and versatile technique for producing ceramic nanofibers and nanotubes,” J. Am. Ceram. Soc., 89, 1861–1869 (2006). |
[51] | N. Daels, S. D. Vrieze, I. Sampers, B. Decostere, et al, “Potential of a functionalisednanofibre microfiltration membrane as an antibacterial water filter,” Desalination., 275, 285-290 (2011). |
[52] | F. Tepper, T. Rivkin, and G. Lukasic, “Novel nanofiber filter medium attracts waterborne pathogens,” Filtr. Sep., 39, 16-19 (2002). |
[53] | D. Bjorge, N. Daels, S. DeVrieze, P. Dejans et al., “Performance assessment of electrospunnanofibers for filter applications. Desalination,” 249, 942–948 (2009). |
[54] | S. Sundarrajan, and S. Ramakrishna, “Fabrication of functionalized nanofiber membranes containing nanoparticles,” J. Nano. Sci. Nanotechn., 10, 1139-1147 (2010). |
[55] | N. L. Lala, R. Ramaseshan, L. Bojun, S. Sundarrajan et al, “Fabrication of nanofibers with antimicrobialfunctionality used as filters protection against bacterial contaminants,” Biotechnol. Bioengg., 97, 1357-1365 (2007). |
[56] | H. Yang, P. F. Gao, W. B. Wu, X. X. Yang, Q. L. Zeng, C. Li, and C. Z. Huang, “Antibacterials loaded electrospun composite nanofibers: release profile and sustained antibacterial efficacy,” Polym. Chem. 5, 1965-1975 (2014). |
[57] | H. Ma, C. Burger, B. Hsiao, and B. Chu, “Ultra-fine cellulose nanofibers: new nano-scalematerials for water purification,” J. Mater. Chem., 21, 7507-7510 (2011). |
[58] | A. Sato, R. Wang, H. Ma, B. Hsiao, and B. Chu, “Novel nanofibrous scaffolds for water filtration with bacteria and virus removal capability,” J. Electron. Microscop., 60, 201–209 (2011). |
[59] | H. Li, C. C. Wu, F. Tepper, J. Lee, and C. Lee, “Removal and retention of viral aerosols by a novel alumina nanofiber filter,” J. Aerosol Sci., 40, 65-71 (2009). |
[60] | D. Bjorge, N. Daels, S. D. Vrieze, P. Dejans et al, “Initial testing of electrospunnanofibre filters in water filtration applications,” Water SA., 36, 151-155 (2010). |
[61] | R. Wang, Y. Liu, B. Li, B. S. Hsiao, and B. Chu, “Electrospunnanofibrous membranes for high flux microfiltration,” J. Membr. Sci., 392-393, 167–174 (2012). |
[62] | M. Montazer, and S. B. Malekzadeh, “Electrospun antibacterial nylon nanofibers through in situsynthesis of nanosilver: Preparation and characteristics,” J. Polym. Res., 19, 99801–99806 (2012). |
[63] | A. Mahapatra, N. GragN, B. P. Nayak, B. G. Mishra, G. Hota, “Studies on the synthesis ofelectrospun PAN-Ag composite nanofibers for antibacterial application,” J. Appl. Polym. Sci., 124, 1178–1185 (2012). |
[64] | R. Davis, S. Zivanovic, D. Dsouza, and P. Davidson, “Effectiveness of chitosan on theinactivation of enteric viral surrogates,” Food Microbiol., 32, 57-62 (2012). |