ISSN Print: 2381-0998  ISSN Online: 2381-1005
Journal of Materials Sciences and Applications  
Manuscript Information
 
 
Modelling the Effect of Dosage on the Biosorption of Ni2+ Ions onto Luffa Cylindrica
Journal of Materials Sciences and Applications
Vol.4 , No. 1, Publication Date: Jan. 25, 2018, Page: 1-9
965 Views Since January 25, 2018, 755 Downloads Since Jan. 25, 2018
 
 
Authors
 
[1]    

Innocent Oseribho Oboh, Department of Chemical and Petroleum Engineering, University of Uyo, Uyo, Nigeria.

 
Abstract
 

Nickel metal contamination exists in industrial processes that use nickel catalysts, such as coal gasification, petroleum refining, and hydrogenation of fats and oils. Therefore, a systematic study on the removal of nickel from wastewater is of considerable significance from an environmental point of view. Luffa cylindrica, a plant material with wide distribution particularly in the tropical world, was characterized as the surface area, chemical bonds, bulk density, Pore size distribution, microstructures, composition, morphology and elemental composition were determined. Biosorption studies were carried out with the dosage varied and the experimental data obtained were fitted to some selected kinetic models. Non-linear regression method was used and the regressed data obtained for the various doses studies ranged from 0.948 to unity. A kinetic model was developed. This empirical model for predicting the sorption capacity for Ni2+ ions sorbed by Luffa cylindrica was derived from the rate constant, equilibrium sorption capacity and the initial sorption rate.


Keywords
 

Biosorption, Luffa cylindrica, Empirical Model, Sorption Capacity, Dosage


Reference
 
[01]    

Veglio, F. and Beolchini, F. (1997). Removal of metals by biosorption: a review. Hydrometallurgy, 44, 301-316.

[02]    

Volesky, B. (1990). Removal and recovery of heavy metals by biosorption, Biosorption of heavy metals, B. Volesky (Editor), CRC Press, Boca Raton, FL, pp. 7-43.

[03]    

Abdel-Ghani, N. T., Ahmad K. H., El-Chaghaby, G. A. and Lima, E. C. (2009). Factorial experimental design for biosorption of iron and zinc using Typha domingensis phytomass. Desalination 249: 343-347.

[04]    

Abdelnaeim, M. Y., El Sherif, I. Y., Attia, A. A., Fathy, N. A., El-Shahat. (2016). Impact of chemical activation on the adsorption performance of common reed towards Cu(II) and Cd(II). International Journal of Mineral Processing. 157, pp 80-88.

[05]    

Singh, S., Verma, L. S., Sambi, S. S. and Sharma, S. K.. Adsorption Behaviour of Ni (II) from Water onto Zeolite X: Kinetics and Equilibrium Studies. Proceedings of the World Congress on Engineering and Computer Science 2008 (WCECS 2008), October 22-24, San Francisco, USA.

[06]    

Luqman, C. A., Muhammad, Saidatul S. J. and Thomas S. Y. C. (2010). Modelling of Single and Binary Adsorptions of Heavy metals onto Activated carbon- Equilibrium studies. Pertanika Journal of Science and Technology 18 (1): 83-93.

[07]    

Mohan, D., Singh, K. P. and Singh, V. K. (2005). Removal of hexavalent chromium from aqueous solution using low-cost activated carbons derived from agricultural waste materials and activated carbon fabric cloth, Ind. Eng. Chem. Res. 44, 1027-1042.

[08]    

Babel, S. and Kurniawan, T. A. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: a review, J. Hazard. Mater. 97, 219-243.

[09]    

Basil J. L., Ev R. R., Milcharek C. D., Martins L. C., Pavan F. A., dos Santos, Jr. A. A., Dias S. L. P., Dupont J., Noreña C. P. Z., and Lima E. C. (2006). Statistical Design of Experiments as a tool for optimizing the batch conditions to Cr(VI) biosorption on Araucaria angustifolia wastes. J Hazard Mater; 133: 143-153.

[10]    

Lima, E. C., Royer, B., Vaghetti, J. C. P., Brasil, J. L., Simon, N. M., dos Santos Jr., A. A., Pavan, F. A., Dias, S. L. P., Benvenutti, E. V. and da Silva, E. A. (2007). Adsorption of Cu(II) on Araucaria angustifolia wastes: determination of the optimal conditions by statistic design of experiments, J. Hazard. Mater. 140, 211-220.

[11]    

Volesky, B. (2003) Sorption and Biosorption. Montreal-St. Lambert, Quebec, Canada, BV Sorbex Inc., 316 p. ISBN 0-9732983-0-8.

[12]    

Rowell R. M., James S. H. and Jeffrey S. R. (2002). Characterization and factors effecting fibre properties, In Frollini E, Leao, AL, Mattoso LHC, (ed.), Natural polymers and agrofibres based composites. Embrapa Instrumentacao Agropecuaria, san Carlos, Brazil pp. 115-134.

[13]    

Mazali I. O. and Alves O. L. (2005). Morphosynthesis: high fidelity inorganic replica of thefibrous network of loofa sponge (Luffa cylindrica). Anais da Academia Brasileira de Ciências, Vol. 77, No. 1, p. 25-31.

[14]    

Ho, Y. S., Huang, C. T. and Huang, H. W. (2002). Equilibrium sorption isotherm for metal ions on tree fern. Process Biochemistry 37: 1421-1430.

[15]    

Gupta, N., Prasad, M., Singhal, N. and Kumar, V. (2009). Modeling the Adsorption Kinetics of Divalent Metal Ions onto Pyrophyllite Using the Integral Method. Ind. Eng. Chem. Res., 48 (4), 2125-2128.

[16]    

Adeyinka A, Liang H. and Tina G (2007). Removal of Metal Ion form Waste Water with Natural Waste. School of Engineering and Technology. 1-8 (33): 4.

[17]    

Marshall, W. E. and Champagne, T. E. (1995). Agricultural Byproducts as Adsorbents for Metal ions in Laboratory Prepared Solutions and in Manufacturing Wastewater, Journal of Environmental Science and Health, Part A: Environmental Science and Engineering. Vol. 30, No. 2, 241-261.

[18]    

Jackson, P. V., Hunt, J. A. and Doherty, P. J. (2004). Hydrophilicity of 3-D biomaterials: The Washburn equation. Journal of Materials in Medicine. 15: 507-511.

[19]    

Coates, J. (2000). Interpretation of Infrared Spectra, A Practical Approach. Encyclopedia of Analytical Chemistry. Meyers, R. A. (Ed.) pp. 10815-10837.

[20]    

Okaka, J. C. and Potter, N. N (1979): “Physicochemical and Functional properties of cowpea powders processed to reduce beany flavours”. Journal of Food Science. 44: 1235-1240.

[21]    

Hamoudi, S. and Kaliaguine, S. (2003). Sulfonic acid-functionalized periodic mesoporous organosilica. Micropor. Mesopor. Mater. 59, p. 195-204.

[22]    

Passos C. G., Ribaski F., Simon N. M., dos Santos Jr. A. A., Vaghetti J. C. P. (2006). Benvenutti E. V. and Lima, E. C. Use of statistical design of experiments to evaluate the sorption capacity of 7-amine-4-azahepthylsilica and 10-amine- 4-azadecylsilica for Cu(II), Pb(II) and Fe(III) adsorption. J Colloid Interface Sci; 302: 396-407.

[23]    

Vaghetti J. C. P., Zat M., Bentes K. R. S., Ferreira L. S., Benvenutti E. V. and Lima E. C. (2003). 4-Phenylenediaminepropylsilica xerogel as a sorbent for copper determination in waters by slurry-sampling ETAAS. J Anal Atom Spectrom; 18: 376-380.

[24]    

Arenas L. T., Vaghetti J. C. P., Moro C. C., Lima E. C., Benvenutti E. V. and Costa T. M. H. (2004). Dabco/silica sol-gel hybrid material. The influence of the morphology on the CdCl2 adsorption capacity. Mater Lett; 58: 895-898.

[25]    

Passos, C. G. Lima, E. C. Arenas, L. T. Simon, N. M. da Cunha, B. M. Brasil, J. L. Costa, T. M. H. and Benvenutti, E. V. (2008). Use of 7-amine-4-azahepthylsilica and 10-amine-4-azadecylsilica xerogels as adsorbent for Pb(II). Kinetic and equilibrium study, Colloids Surfaces. A 316; 297-306.

[26]    

Pavia, D. L., Lampman, G. M. and Kriz, G. S. (1996). Introduction to Spectroscopy, 2nd edn., Saunders Golden Sunburst Series, New York.

[27]    

Largegren, S. (1898) About the theory of so-called adsorption of soluble substances, Kungliga Suensk Vetenskapsakademiens Handlingar 241: 1-39.

[28]    

Ho, Y. S. and G. Mckay,(2000) The Kinetics of Sorption of Divalent Metal Ions onto Sphagnum Moss Peat, Wat. Res. 34 (3), 735-742.

[29]    

Ayoob, S., Gupta, A. K., Bhakat, P. B. and Bhat, V. T. (2008). Investigations on the kinetics and mechanisms of sorptive removal of fluoride from water using alumina cement granules, Chemical Engineering Journal. 140: 6-14.

[30]    

Weber Jr., W. J. and Morris, J. C. (1963). Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div. Am. Soc. Civil Eng. 89: 31-59.

[31]    

Lopes, E. C. N., dos Anjos, F. S. C., Vieira, E. F. S. and Cestari, A. R. (2003). An alternative Avrami equation to evaluate kinetic parameters of the interaction of Hg(II) with thin chitosan membranes, J. Colloid Interface Sci. 263: 542-547.

[32]    

Naja, G. M., Murphy, V. and Volesky B (2009). Biosorption, metals. Encyclopedia of Industrial Biotechnology (accepted, Dec 2007, in press).





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership