Vol.3 , No. 1, Publication Date: Jun. 7, 2017, Page: 8-13
[1] | Nabil Khelifati, Division of Development of Semiconductor Conversion Devices, Research Center in Semiconductor Technology for the Energetic (CRTSE / ex. UDTS), Algiers, Algeria; Department of Physics, Faculty of Sciences, M'hamed Bougara University of Boumerdès (UMBB), Boumerdès, Algeria. |
[2] | Djoudi Bouhafs, Division of Development of Semiconductor Conversion Devices, Research Center in Semiconductor Technology for the Energetic (CRTSE / ex. UDTS), Algiers, Algeria. |
[3] | Seddik-El-Hak Abaidia, Department of Physics, Faculty of Sciences, M'hamed Bougara University of Boumerdès (UMBB), Boumerdès, Algeria. |
[4] | Yacine Kouhlane, Division of Development of Semiconductor Conversion Devices, Research Center in Semiconductor Technology for the Energetic (CRTSE / ex. UDTS), Algiers, Algeria. |
In this paper, computational results of simultaneous gettering of chromium (Cr), iron (Fe) and nickel (Ni) in p-type silicon by phosphorus diffusion are presented. The study was carried out by a software tool "GetProg" developed in our centre CRTSE. Simulated aspect includes impurity diffusion, segregation and also precipitates dissolution phenomenon. The kinetics of dissolved impurities gettering has been described by a diffusion-segregation equation (DSE) extended by precipitates dissolution term. The input initial parameters of metals in material were mainly taken from experimental results obtained for sheet multicrystalline silicon. The simulation allowed the study of the simultaneous behaviour of Cr, Fe and Ni during an optimized multi-plateau-gettering process (MPG). Two MPG scenarios have been investigated; High-Low and Low-High temperature. The findings demonstrate that the MPG effectiveness of studied metals depends significantly on the nature of metal and its initial concentration, as well as the used MPG scenario.
Keywords
Silicon, Transition Metals, Simulation, Gettering Optimization
Reference
[01] | K. Graff, Metal Impurities in Silicon Device Fabrication, Spiringer-Verlag, Berlin, Germany (1994), p. 13; DOI: 10.1007/978-3-642-97593-6. |
[02] | E. R. Weber and D. Gilles, Semiconductor silicon (1990), H. R. Hu_, K. G. Barraclough and J. Chikawa, Eds., PV 90-7, p. 585, The Electrochem. Soc. Proc. Series, Pennington, NJ (1990). |
[03] | W. Bergholz, G. Zoth, F. Gelsdorf and B. Kolbeson, Defects in Silicon II, (1991). |
[04] | W. M. Bullis, U. Gosele and F. Shimura, Eds., PV 91-9, p. 21, The Electrochem. Soc. Proc. Series, Pennington, NJ (1991). |
[05] | A. Istratov, T. Buonassisi, R. J. McDonald, A. Smith, R. Schindler, J. Rand, J. Kalejs, E. R. Weber, Metal content of multicrystalline silicon for solar cells and its impact on minority carrier diffusion length, J. Appl. Phys. 94, (2003) 6552; http://dx.doi.org/10.1063/1.1618912. |
[06] | A. Laades, K. Lauer, M. Bähr, C. Maier, A. Lawerenz, D. Alber, J. Nutsch, J. Lossen, C. Koitzsch, R. Kibizov, Impact of Iron Contamination on CZ-Silicon Solar Cells, Proceedings of 23rd European Photovoltaic Solar Energy Conference, Valencia, Spain (2008); doi: 10.4229/23rdEUPVSEC2008-2CV.5.46. |
[07] | S. P. Phang and D. Macdonald, Direct comparison of boron, phosphorus, and aluminum gettering of iron in crystalline silicon, J. Appl. Phys. 109, (2011) 073521; http://dx.doi.org/10.1063/1.3569890. |
[08] | J. Schӧn, V. Vähänissi, A. Haarahiltunen, M. C. Schubert, W. Warta and H. Savin, Main defect reactions behind phosphorus diffusion gettering of iron, J. Appl. Phys. 116, (2014) 244503; http://dx.doi.org/10.1063/1.4904961. |
[09] | J. Schӧn, M. C. Schubert, W. Warta, H. Savin, and A. Haarahiltunen, Analysis of simultaneous boron and phosphorus diffusion gettering in silicon, Phys. Status Solidi A 207, No. 11, (2010) 2589 - 2592; DOI: 10.1002/pssa.201026333. |
[10] | A. Haarahiltunen, H. Talvitie, H. Savin, M. Yli-Koski, M. I. Asghar, and J. Sinkkonen, Modeling boron diffusion gettering of iron in silicon solar cells, Appl. Phys. Lett. 92, (2008) 021902; http://dx.doi.org/10.1063/1.2833698. |
[11] | A. Ben Jaballah, M. Hassen, H. Rahmouni, M. Hajji, A. Selmi, H. Ezzaouia, Impacts of phosphorus and aluminum gettering with porous silicon damage for p-type Czochralski silicon used in solar cells technology, Thin Solid Films 511–512 (2006) 377– 380; http://dx.doi.org/10.1016/j.tsf.2005.11.101. |
[12] | I. Perichaud, Gettering of impurities in solar silicon, Solar Energy Materials & Solar Cells 72 (2002) 315–326; http://dx.doi.org/10.1016/S0927-0248(01)00179-9. |
[13] | P. S. Plekhanov, M. D. Negoita, and T. Y. Tan, Effect of Al-induced gettering and back surface field on the efficiency of Si solar cells, J. Appl. Phys. 90, (2001) 5388; http://dx.doi.org/10.1063/1.1412575. |
[14] | V. Kveder, W. Schröter, A. Sattler, M. Seibt, Simulation of Al and phosphorus diffusion gettering in Si, Materials Science and Engineering B71 (2000) 175–181; http://dx.doi.org/10.1016/S0921-5107(99)00370-0. |
[15] | M. Loghmarti, R. Stuck, J. C. Muller, D. Sayah, and P. Siffert, Strong improvement of diffusion length by phosphorus and aluminum gettering, Appl. Phys. Lett. 62, (1993) 979; http://dx.doi.org/10.1063/1.108539. |
[16] | C. del Canizo and A. Luque, A Comprehensive model for the gettering of lifetime-killing impurities in silicon, J. Electrochem. Soc. 147 (7) (2000) 2685-2692; doi: 10.1149/1.1393590. |
[17] | A. Haarahiltunen, H. Savin, M. Yli-Koski, H. Talvitie, and J. Sinkkonen, Modeling phosphorus diffusion gettering of iron in single crystal silicon, J. Appl. Phys. 105, (2009) 023510; http://dx.doi.org/10.1063/1.3068337. |
[18] | J. Hofstetter, D. P. Fenning, M. I. Bertoni, J. F. Lelièvre, C. del Cañizo, and T. Buonassisi, Impurity-to-efficiency simulator: predictive simulation of silicon solar cell performance based on iron content and distribution, Prog. Photovolt: Res. Appl., 19: 487–497; doi: 10.1002/pip.1062. |
[19] | D. P. Fenning, A. S. Zuschlag, J. Hofstetter, A. Frey, M. I. Bertoni, G. Hahn, and T. Buonassisi, Investigation of lifetime-limiting defects after high-temperature phosphorus diffusion in highiron-content multicrystalline silicon, IEEE J. Photovoltaics, vol. 4, no. 3 (2014) 866 - 873; doi: 10.1109/JPHOTOV.2014.2312485. |
[20] | J. R. Davis, A. Rohatgi, R. H. Hopkins, P. D. Blais, P. Rai-Choudhury, J. R. Mccormick, and H. C. Mollenkopf, Impurities in silicon solar cells, no. 4, 1980. |
[21] | J. Schmidt, B. Lim, D. Walter, K. Bothe, S. Gatz, T. Dullweber, and P. P. Altermatt, “Impurity related limitations of next-generation industrial silicon solar cells,” IEEE J. Photovoltaics, vol. 3, no. 1 (2013) 114 - 118; doi: 10.1109/JPHOTOV.2012.2210030. |
[22] | G. Coletti, Sensitivity of state-of-the-art and high efficiency crystalline silicon solar cells to metal impurities, Prog. Photovolt: Res. Appl., vol. 21, no. 5 (2013) 1163–1170; doi: 10.1002/pip.2195. |
[23] | J. Hofstetter, J. F. Lelièvre, C. del Canizo, A. Luque, Acceptable contamination levels in solar grade silicon: From feedstock to solar cell, Materials Science and Engineering B 159–160, 299–304 (2009); http://dx.doi.org/10.1016/j.mseb.2008.05.021. |
[24] | A. A. Istratov, E. R. Weber, Electrical properties and recombination activity of copper, nickel and cobalt in silicon, Appl. Phys. A 66, 123–136 (1998); doi: 10.1007/s003390050649. |
[25] | S. Rein, Lifetime Spectroscopy. Berlin, Germany, Springer (2005); DOI: 10.1007/3-540-27922-9. |
[26] | H. Kitagawa, S. Tanaka, H. Nakashima, M. Yoshida, Electrical properties of nickel in silicon, J. Electron. Mater. 20, (1991) 441; doi: 10.1007/BF02657824. |
[27] | W. B. Chua, K. Rose, Electrical Properties of High-Resistivity Nickel-Doped Silicon, J. Appl. Phys. 41 (1970) 2644; http://dx.doi.org/10.1063/1.1659275. |
[28] | N. Khelifati, D. Bouhafs, S-E-H. Abaidia, A. Boucheham and B. Palahouane, Proceedings of 29th European Photovoltaic Solar Energy Conference and Exhibition, Amsterdam, Netherlands (2014). |
[29] | T. Y. Tan, Mass transport equations unifying descriptions of isothermal diffusion, thermomigration, segregation, and position-dependent diffusivity, Appl. Phys. Lett. 73 (1998) 2678; http://dx.doi.org/10.1063/1.122551. |
[30] | P. S. Plekhanov, R. Gafiteanu, U. M. Gösele, T. Y. Tan, Modeling of gettering of precipitated impurities from Si for carrier lifetime improvement in solar cell applications, J. Appl. Phys. 86, 2453 (1999); http://dx.doi.org/10.1063/1.371075. |
[31] | T. Y. Tan, R. Gafiteanu, S. M. Joshi, and U. Gösele, “Science and Modeling of ImpurityGettering in Silicon”, in Semiconductor Silicon 1998, eds. H. R. Huff, U. Gösele, and H. Tsuya (The Electrochem. Soc., Pennington, NJ, 1998) p. 1050. |
[32] | F. Ham, Theory of diffusion limited precipitation, J. Phys. Chem. Solids 6 (1958) 335; doi: 10.1016/0022-3697(58)90053-2. |
[33] | R. Chen, B. Trzynadlowski, and S. T. Dunham, Phosphorus vacancy cluster model for phosphorus diffusion gettering of metals in Si, J. Appl. Phys. 115, (2014) 054906; http://dx.doi.org/10.1063/1.4864377. |
[34] | K. Lauer, A. Laades, A. Lawerenz, K. Neckermann, A. Sidelnicov, Impact of Different Annealing Steps on the Interstitial Iron Concentration in Solar-Grade Czochralski Silicon, Proceedings of 25th European Photovoltaic Solar Energy Conference and Exhibition, Valencia, Spain (2010); 10.4229/25thEUPVSEC2010-2CV.3.76. |
[35] | M. Blazek, W. Kwapil, J. Schön and W. Warta, Gettering Efficiency of Backside Aluminium Layer and Al-Si-Eutectic, Proceedings of 23rd European Photovoltaic Solar Energy Conference, Valencia, Spain (2008); doi: 10.4229/23rdEUPVSEC2008-2CV.5.16. |
[36] | T. Y. Tan, Subcontract Report, NREL / SR–520-37991 (2005). |
[37] | T. Buonassisi, A. A. Istratov, M. D. Pickett, M. Heuer, J. P. Kalejs, G. Hahn, M. A. Marcus, B. Lai, Z. Cai, S. M. Heald, T. F. Ciszek, R. F. Clark, D. W. Cunningham, A. M. Gabor, R. Jonczyk, S. Narayanan, E. Sauar, E. R. Weber, Chemical natures and distributions of metal impurities in multicrystalline silicon materials, Prog. Photovolt: Res. Appl., 14 (2006) 513–531; doi: 10.1002/pip.690. |
[38] | J. Nelson, The Physics of Solar Cells, Imperial College Press (2003). |