Vol.1 , No. 3, Publication Date: Jun. 11, 2015, Page: 124-129
[1] | Ahmed E. Hannora, Department of Science and Mathematical Engineering, Faculty of Petroleum and Mining Engineering, Suez University, Suez, Egypt. |
[2] | El-Shazly M. Duraia, Department of Physics, Faculty of Science, Suez Canal University, Ismailia, Egypt. |
[3] | Ashraf Bakkar, Department of Metallurgical and Materials Engineering, Faculty of Petroleum and Mining Engineering, Suez University, Suez, Egypt. |
Titanium substrates were subjected to severe plastic deformation using surface mechanical attrition treatment (SMAT) in a high energy ball mill. Mechanical treatments influence the microstructure and mechanical behaviour of the Ti-surface. Moreover, partial amorphization takes place concurrently in the surface region. Successive subdivision and amorphization finally results in the formation of well separated nanocrystalline and amorphous phases in the near surface. Surface mechanically treated Ti-substrates were characterized by X-Ray Diffraction (XRD) and Atomic Force Microscopy (AFM). The average grain size of the nanocrystallites is about 200nm after 10 min of SMAT, and about 18nm after 20 min. The microhardness of the mechanically treated Ti-surfaces is improved as a result of surface nanocrystallization. However, corrosion resistance of SMAT samples decreases significantly compared to untreated Ti substrates. Contamination with Fe and Cr were observed at the Ti-surface after SMAT. These particles could play an important role in material strengthening and amorphization process.
Keywords
Titanium Nanocrystallization, Surface Mechanical Attrition, Treatment (SMAT), High Energy Ball Mill
Reference
[01] | M. Wen , G. Liu, J. Gu, W. Guan, J. Lu, Appl. Surf. Sci., 255, (2009), 6097. |
[02] | Á. Révész, P. Szommer, P.J. Szabó, L.K. Varga, J. of Alloys and Comp., 509S(2011)S482. |
[03] | K.Y. Zhu, A. Vassel, F. Brisset, K. Lu, J., Acta Mater, 52(2004) 4100. |
[04] | Bach Fr. W., Laarmann A. and WenzT. Modern Surface Technology. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006 |
[05] | L. Laouar, H.Hamadache, S. Saad, A. Bouchelaghem, S. Mekhilef, Phys. Procedia, 2(2009)1213. |
[06] | B. Arifvianto, Suyitno, M. Mahardika, P. Dewo, P.T. Iswanto, U.A. Salim, Mater. Chem. and Phys., 125 (2011)418. |
[07] | T. Hu, C.L. Chu, S.L. Wu, R.Z. Xu, G.Y. Sun, T.F. Hung, K.W.K. Yeung, Z.W. Wu, G.Y. Li, Paul K. Chu., Intermetallics 19, (2011), 1136. |
[08] | A. Hannora, A. Mamaeva, N. Mofa, S. Aknazarov, Z.Mansurov, Eurasian Chemico-technological Journal, 11, 1(2009)37. |
[09] | C. Suryanarayana, Prog. Mater. Sci., 46(2001)1. |
[10] | F. Delogu*, G. Cocco, J. of Alloys and Comp. 352 (2003) 92–98 |
[11] | Xiao-Tao Luo, Chang-Jiu Li, Guan-Jun Yang, J. of Alloys and Comp., 548 (2013) 180–187 |
[12] | L. Zaluski, P. Tessier, D.H. Ryan, C.B. Doner, A. Zaluska, J.O. Strom-Olsen, M.L. Trudeau, R. Schulz, J. of Materials Research 8, 12 (1993) 3059-3068 |
[13] | Ikeuchi, T.,Saito, T.,Kobayashi, M, Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy 49, 10(2002) 861-867 |
[14] | Chu, B.-L.,Lee, S.-M.,Perng, T.-P, Journal of Applied Physics 69, 8, (1991) 4211-4215 |
[15] | Hideki Hotta, Masatake Abe, Toshiro Kuji, Hirohisa Uchida, J. of Alloys and Comp. 439 (2007) 221–226. |
[16] | Myong Jin Choi, Hyun Seon Hong, Kyung Sub Lee, J. of Alloys and Comp. 358 (2003) 306–311. |
[17] | E. Hellstern, L. Schultz, Materials Science and Engineering, 93(1987) 213–216 |
[18] | M. Ravi Shankar, B.C. Rao, S. Lee, S. Chandrasekar, A. H. King, W. Dale Compton, Acta Mater., 54(2006)3691. |
[19] | V.V. Stolyarov, Th. Y. Zhu, I. V. Alexandrov, T. C. Lowe, R. Z. Valiev, Mater. Sci. and Eng., A 299(2001)59. |
[20] | C. Leyens, M. Peters, Titanium and Titanium Alloys. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2003. |
[21] | S. Karan, S. Sen Gupta, S.P. Sen Gupta, Mater. Chem. and Phys., 69(2001)143. |
[22] | Baboian R., NACE Corrosion Engineer’s Reference Handbook, 3rd ed., NACE International, 2002. |