World Journal of Biochemistry and Molecular Biology  
Manuscript Information
 
 
Kinetics and Mechanism of Electron-Transfer Reactions: Oxidation of Nalidixic Acid by Diperiodatocuprate (III) in Alkaline Medium
World Journal of Biochemistry and Molecular Biology
Vol.3 , No. 2, Publication Date: May 16, 2018, Page: 37-45
3758 Views Since May 16, 2018, 867 Downloads Since May 16, 2018
 
 
Authors
 
[1]    

Gajala Tazwar, Department of Chemistry, Janki Devi Bajaj Government Girls College, Kota, India.

[2]    

Mahima Sharma, Department of Chemistry, Janki Devi Bajaj Government Girls College, Kota, India.

[3]    

Vijay Devra, Department of Chemistry, Janki Devi Bajaj Government Girls College, Kota, India.

 
Abstract
 

The kinetics and mechanism of oxidation of nalidixic acid by diperiodatocuprate (III) in aqueous alkaline medium has been studied spectrophotometrically at 303 K. The reaction exhibits first order with respect to oxidant but substrate dependence is complex. The stoichiometry of the reaction has been observed to two moles of the oxidant for a mole of the substrate. The oxidation product of the substrate is 1-ethyl-2-hydroxy-1, 4-dihydro-7-methyl-4-oxo-1, 8-naphthyridine-3-carboxylic acid as established spectrally. The active species of diperiodatocuprate (III) is understood to be as monoperiodatocuprate (III). The activation parameters were also determined and discussed. The activation parameters and thermodynamics quantities were also determined and discussed. A plausible reaction mechanism has been suggested to account for experimental observations.


Keywords
 

Diperiodatocuprate (III), Nalidixic Acid, Oxidation, Kinetics, Mechanism


Reference
 
[01]    

H. Yao, M. Zhang, W. Zeng, X. Zeng, Z. Zhang, A novel chemiluminescence assay of mitoxantrone based on diperiodatocuprate (III) oxidation. Spectrochim. Acta. Part A. 117 (2014) 645–650.

[02]    

A. Kumar, P. Kumar, P. Ramamurthy, Kinetics of oxidation of glycine and related substrates by diperiodatoargentate (III). Polyhedron. 18 (1999) 773–780.

[03]    

R. S. Shettar, S. T. Nandibewoor, Kinetic, mechanistic and spectral investigations of ruthenium (III)- catalysed oxidation of 4-hydroxycoumarin by alkaline diperiodatonickelate (IV) (stopped flow technique). J. Mol. Catal. A. 234 (2005) 137–143.

[04]    

Y. Hu, G. Li, Z. Zhang, A flow injection chemiluminescence method for the determination of lincomycin in serum using a diperiodato-cuprate (III)–luminol system. Luminescence. 26 (2011) 313–318.

[05]    

J. E. Weder, C. T. Dillon, T. W. Hambley, B. J. Kennedy, P. A. Lay, J. R. Biffin, H. L. Regtop, N. M. Davies, Copper complexes of non-steroidal anti-inflammatory drugs: an opportunity yet to be realized. Coord. Chem. Rev. 232 (2002) 95–126.

[06]    

A. M. Bagoji, P. A. Magdum, S. T. Nandibewoor, Oxidation of Acebutolol by Copper (III) Periodate Complex in Aqueous Alkaline Medium: A Kinetic and Mechanistic Approach. J. Solution Chem. (2016). doi: 10.1007/s10953-016-0539-x

[07]    

R. N. Hegde, N. P. Shetti, S. T. Nandibewoor, Oxidative degradation and deamination of atenolol by diperiodatocuprate (III) in aqueous alkaline medium: A mechanistic study, Polyhedron. 28 (2009) 3499–3506.

[08]    

K. S. Byadagi, R. V. Hosahalli, S. T. Nandibewoor, S. A. Chimatadar, Oxidation of a Anticholinergic Drug Atropine Sulfate Monohydrate by Alkaline Copper (III) Periodate Complex: A Kinetic and Mechanistic Study. Z. Phys. Chem. 226 (2012) 233–249.

[09]    

K. Byadagi, M. Meti, S. Nandibewoor, S. Chimatadar, Catalytic Activity of Palladium (II) and Osmium (VIII) on the Oxidation of Chloramphenicol by Copper (III) Periodate Complex in Aqueous Alkaline Medium: A Comparative Kinetic and Mechanistic Approach. Ind. Eng. Chem. Res. (2013). doi: 10.1021/ie400097n

[10]    

S. D. Lamani, P. N. Naik, S. T. Nandibewoor, Spectral and Mechanistic Investigation of the Osmium (VIII) Catalyzed Oxidation of Diclofenac Sodium by the Copper (III) Periodate Complex in Aqueous Alkaline Medium J. Solution Chem. 39 (2010) 1291–1310.

[11]    

U. R. Bagwan, A. L. Harihar, S. D. Lamani, I. N. Shaikh, A. B. Teradale, Uncatalyzed Oxidation of Anti Tuberculosis drug, Pyrazinamide by Cu (III) Complex in Aqueous Alkaline Media: A Kinetic Approach. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 8 (2017) 1015-1026.

[12]    

M. A. Angadi, S. M. Tuwar, Oxidation of Fursemide by Diperiodatocuprate (III) in Aqueous Alkaline Medium—a Kinetic Study J. Solution Chem. 39 (2010) 165–177.

[13]    

S. A. Chimatadar, T. Basavaraj, K. A. Thabaj, S. T. Nandibewoor. Ruthenium (III) catalysed oxidation of gabapentin (neurontin) by diperiodatocuprate (III) in aqueous alkaline medium—A kinetic and mechanistic study. J. Mol. Catal. A: Chem. 267 (2007) 65–71.

[14]    

C. M. Oliphant, G. M. Green, Quinolones: a comprehensive review. Clin. Pharmacol. 65 (2002) 455-464.

[15]    

R. C. Owens, P. G. Ambrose, Antimicrobial safety: focus on fluoroquinolones. Clin. Infect. Dis. 41 (2005) 144–147.

[16]    

A. J. Watkinson, E. J. Murby, S. D. Costanzo, Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling. Water Res. 41 (2007) 4164–4176.

[17]    

H. Stass, Metabolism and Excretion of Moxifloxacin. Drugs. 58 (1999) 231–232.

[18]    

D. Calamari, E. Zuccato, S. Castiglioni, R. Bagnati, R. Fanelli, Strategic Survey of Therapeutic Drugs in the Rivers Po and Lambro in Northern Italy. Environ. Sci. Technol. 37 (2003) 1241–1248.

[19]    

A. A. Robinson, J. B. Belden, M. J. Lydy, Toxicity of fluoroquinolone antibiotics to aquatic organisms. Environ. Toxicol. Chem. 24 (2005) 423–430.

[20]    

J. Fick, H. Soderstrom, R. H. Lindberg, C. Phan, M. Tysklind, D. G. J. Larsson, Contamination of surface, ground, and drinking water from pharmaceutical production. Environ. Toxicol. Chem. 28 (2009) 2522–2527.

[21]    

O. A. H. Jones, N. Voulvoulis, J. N. Lester, Potential Ecological and Human Health Risks Associated With the Presence of Pharmaceutically Active Compounds in the Aquatic Environment. Crit. Rev. Toxicol. 34 (2004) 335–350.

[22]    

P. Wang, H. Yi-Liang, C. H. Ching-Hua, Water Res. 44 (2010) 5989-5998.

[23]    

H. C. Zhang, C. H. Haung, Oxidative transformation of Triclosan and Chlorophene by Manganese Oxides. Environ. Sci. Technol. 37 (2003) 2421-2430.

[24]    

G. Mascolo, L. Balest, D. Cassano, G. Laera, A. Lopez, A. Pollice, C. Salerno, Biodegradability of pharmaceutical industrial wastewater and formation of recalcitrant organic compounds during aerobic biological treatment. Bioresour Technol. 101 (2010) 2585-2591.

[25]    

L. K. Ge, J. W. Chen, X. X. Wei, S. Y. Zhang, X. L. Qiao, X. Y. Cai, Q. Xie, 474 Aquatic Photochemistry of Fluoroquinolone Antibiotics: Kinetics, Pathways, and Multivariate 475 Effects of Main Water Constituents. Environ. Sci. Technol. 44 (2010) 2400-2405.

[26]    

D. L. Ross, C. M. Riley, Aqueous solubility’s of some variously substituted quinolone antimicrobials. Int. J. Pharm. 63 (1990) 237-250.

[27]    

A. M. Barlow. Nalidixic acid in infections of urinary tract. Br. Med. J. 2 (1963) 1308-1310.

[28]    

G. P. Panigrahi, P. K. Misro, Kinetics and mechanism of oxidation of aliphatic ketones by sodium metaperiodate: A comparative study of uncatalysed versus osmium tetraoxide-catalysed oxidation. Indian Journal of Chemistry. 16 (1978) 762–766.

[29]    

P. K. Murthy, B. Sethuram, T. N. Rao, Kinetics of oxidation of some alcohols by diperiodatocuprate (iii) in alkaline medium. Zeitschrift fur Physikalische Chemie- Leipzig, 262 (1981) 336–340.

[30]    

G. H. Jeffery, J. M. Bassett, J. Mendham, R. C. Denny, Vogels’ text book of quantitative chemical analysis (5th ed., pp. 371–455). Longman: ELBS (1996).

[31]    

N. P. Shetti, S. T. Nandibewoor, Kinetic and mechanistic investigations on oxidation of l-tryptophan by diperiodatocuprate (III) in aqueous alkaline medium. Z. Phys. Chem. 223 (2009) 299-317.

[32]    

J. C. Bailar, H. J. Emeleus, S. R. Nyholm, A. F. Trotman Dikenson, Comprehensive inorganic chemistry (Vol. 2, p. 1456). Oxford: Pergamon Press (1975).

[33]    

K. Bal Reddy, B. Sethuram, T. Navaneeth Rao, Kinetics of oxidative deamination and decarboxylation of some amino acids by diperiodato cuprate (III) in alkaline medium. Indian Journal of Chemistry A. 20 (1981) 395–397.

[34]    

D. C. Hiremath, T. S. Kiran, S. T. Nandibewoor, Oxidation of vanillin by diperiodatocuprate (III) in aqueous alkaline medium: A kinetic and mechanistic study by stopped flow technique. Int. J. Chem. Kinet. 39 (2007) 236–244. http://dx.doi.org/10.1002/(ISSN)1097-4601

[35]    

A. Weissberger, E. S. Lewis, (Eds.) Investigation of rates and mechanism of reactions in techniques of chemistry, Wiley Interscience, New York, 1974.

[36]    

D. C. Hiremath, K. T. Sirsalmath, S. T. Nandibewoor. Osmium (VIII)/ruthenium (III) catalyzed oxidation of L-lysine by diperiodatocuprate (III) in aqueous alkaline medium: A comparative mechanistic approach by stopped flow technique. Catalysis Letters, 122 (2008) 144–154. http://dx.doi.org/10.1007/s10562-007-9361-9





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership