[1]
Spinors and Spin Network, universe-review.ca
[2]
Brian Hayes, g-ology, Computing Science: g-ology. American Scientist, Vol. 92, No. 3, May-June 2004, pages 212-216.
[3]
L. M. Ionescu, The Feynman Legacy, Int. J. Pure and Appl. Math., Vol. 48, No. 3, 2008, pp. 333-355, https://arxiv.org/abs/math/0701069; “From operads and PROPs to Feynman processes”, JP Alg. Number Theory and Applications, Vol. 7, No. 2, pp. 261-283, 2007; arXiv:math/0701299
[4]
I. V. Volovich, Number Theory as the Ultimate Physics Theory, P-Adic Numbers, Ultrametric Analysis, and Applications, January 2010, Volume 2, Issue 1, pp 77-87.
[5]
L. M. Ionescu, Remarks on Physics as Number Theory, Proceedings of the NPA, Vol. 9, p. 232-244, 2012.
[6]
P. A. M. Dirac, The relation between mathematics and physics, 1939, http://www.damtp.cam.ac.uk/events/strings02/dirac/speach.html
[7]
Eugen Wigner, The unreasonable effectiveness of mathematics in the natural sciences, 1960.
[8]
D. Gross, Physics and mathematics at the frontier, Proc. Nati. Acad. Sci. USA Vol. 85, pp. 8371-8375, November 1988 Symposium Paper, 1988; http://www.pnas.org/content/85/22/8371.full.pdf
[9]
Pythagoras: “Number rules the Universe”, https://www.goodreads.com/quotes/597107-number-rules-the-universe
[10]
F. Capra, The Tao of Physics, 1999.
[11]
R. Healey, Holism and Nonseparability in Physics, Stanford Encyclopedia of Phylosophy, 2016, https://plato.stanford.edu/entries/physics-holism/
[12]
M. P. Seevick, Holism, Physical Theories and Quantum Mechanics, 2005; https://arxiv.org/abs/quant-ph/0402047
[13]
L. M. Ionescu, On the arrow of time, Theoretical Physics, Vol. 2, No. 3, September 2017, https://dx.doi.org/10.22606/tp.2017.23002
[14]
L. M. Ionescu, The Digital World Theory: An Invitation”, Olimp Press, ISBN: 973-7744-39-x, Olimp Press, 2006; http://www.amazon.com/Digital-World-Theory-Lucian-Ionescu/dp/973774439X.
[15]
L. M. Ionescu, Q++ and a Non-Standard Model (DWT v. 2), ISBN: 978-1-4251-3492-1; http://www.lulu.com/content/970826.
[16]
David Bohm, Wholeness and the Implicate Order, Routledge, 1980.
[17]
R. Feynman, The Feynman Lectures in Physics, Vol. 4, http://www.feynmanlectures.caltech.edu/
[18]
P. G. Kwiat, B-G. Englert, “Quantum erasing the nature of reality or, perhaps, the reality of nature?”, Science and Ultimate Reality: Quantum Theory, Cosmology, and Complexity, Edited by John D. Barrow, Paul C. W. Davies and Charles L. Harper, Jr.., Ch. 15, pp. 306-328, Cambridge University Press, 2004; http://research.physics.uiuc.edu/QI/photonics/sciam-supplemental.html
[19]
C. W. Misner, J. A. Wheeler, Classical Physics as Geometry, Annals of Physics, Volume 2, Issue 6, p. 525-603, 1957.
[20]
Geometrodynamics, Wikipedia, https://en.wikipedia.org/wiki/Geometrodynamics
[21]
V. Turaev, Quantum Invariants of knots and 3-Manifolds.
[22]
L. H. Kauffman, S. L. Lins, Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds, AM-134, Princeton University Press, 1994.
[23]
L. Kauffman, S. J. Lomonaco Jr., Topological Quantum Information Theory.
[24]
Z. Merali, “Entangled in the free will debate”, New Scientist, 4 August 2007, p. 10-11.
[25]
R.~Britto, F.~Cachazo, B.~Feng and E.~Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett., Vol. 94, 181602 (2005), hep-th/0501052, doi: 10.1103/PhysRevLett.94.181602.
[26]
[QuantaMag] Natalie Wolchover, A jewel at the heart of Quantum Physics, Quanta Magazine, Sept. 2013, https://www.quantamagazine.org/physicists-discover-geometry-underlying-particle-physics-20130917/
[27]
N.~Arkani-Hamed, F.~Cachazo and J.~Kaplan, What is the Simplest Quantum Field Theory?, JHEP Vol. 1009, 016 (2010), doi: 10.1007/JHEP09(2010)016, hep-th/0808.1446.
[28]
N. Christenson, L. M. Ionescu, A Hopf algebra approach to BCFW recursion, work in progress, 2017.