About Communications       Author's Guide       Reviewers       Editorial Members       Archive
Volume 8
Volume 7
Volume 6
Volume 5
Volume 4
Volume 3
Volume 2
Volume 1
AASCIT Communications | Volume 4, Issue 4 | Sep. 14, 2017 online | Page:19-26
A Holistic Approach to Quantum Physics
Quantum phenomena reflect resonance at the very fundamental level of a network processing Quantum Information. The term “particle” is a hindrance preventing the shift to a new paradigm. A top-level mental-visual model for “elementary particles” and some other quantum experiments is needed, and provided: a foamy Riemann Surface is interpreted as a Quantum Chip, having both fermionic parameters (sources as integrals), and bosonic character (propagating energy-momentum).
Lucian Miti Ionescu, Mathematics Department, Illinois State University, Normal IL, USA.
Quantum Computing, Riemann Surfaces, Feynman Diagrams, Aharonov-Bohm
Spinors and Spin Network, universe-review.ca
Brian Hayes, g-ology, Computing Science: g-ology. American Scientist, Vol. 92, No. 3, May-June 2004, pages 212-216.
L. M. Ionescu, The Feynman Legacy, Int. J. Pure and Appl. Math., Vol. 48, No. 3, 2008, pp. 333-355, https://arxiv.org/abs/math/0701069; “From operads and PROPs to Feynman processes”, JP Alg. Number Theory and Applications, Vol. 7, No. 2, pp. 261-283, 2007; arXiv:math/0701299
I. V. Volovich, Number Theory as the Ultimate Physics Theory, P-Adic Numbers, Ultrametric Analysis, and Applications, January 2010, Volume 2, Issue 1, pp 77-87.
L. M. Ionescu, Remarks on Physics as Number Theory, Proceedings of the NPA, Vol. 9, p. 232-244, 2012.
P. A. M. Dirac, The relation between mathematics and physics, 1939, http://www.damtp.cam.ac.uk/events/strings02/dirac/speach.html
Eugen Wigner, The unreasonable effectiveness of mathematics in the natural sciences, 1960.
D. Gross, Physics and mathematics at the frontier, Proc. Nati. Acad. Sci. USA Vol. 85, pp. 8371-8375, November 1988 Symposium Paper, 1988; http://www.pnas.org/content/85/22/8371.full.pdf
Pythagoras: “Number rules the Universe”, https://www.goodreads.com/quotes/597107-number-rules-the-universe
F. Capra, The Tao of Physics, 1999.
R. Healey, Holism and Nonseparability in Physics, Stanford Encyclopedia of Phylosophy, 2016, https://plato.stanford.edu/entries/physics-holism/
M. P. Seevick, Holism, Physical Theories and Quantum Mechanics, 2005; https://arxiv.org/abs/quant-ph/0402047
L. M. Ionescu, On the arrow of time, Theoretical Physics, Vol. 2, No. 3, September 2017, https://dx.doi.org/10.22606/tp.2017.23002
L. M. Ionescu, The Digital World Theory: An Invitation”, Olimp Press, ISBN: 973-7744-39-x, Olimp Press, 2006; http://www.amazon.com/Digital-World-Theory-Lucian-Ionescu/dp/973774439X.
L. M. Ionescu, Q++ and a Non-Standard Model (DWT v. 2), ISBN: 978-1-4251-3492-1; http://www.lulu.com/content/970826.
David Bohm, Wholeness and the Implicate Order, Routledge, 1980.
R. Feynman, The Feynman Lectures in Physics, Vol. 4, http://www.feynmanlectures.caltech.edu/
P. G. Kwiat, B-G. Englert, “Quantum erasing the nature of reality or, perhaps, the reality of nature?”, Science and Ultimate Reality: Quantum Theory, Cosmology, and Complexity, Edited by John D. Barrow, Paul C. W. Davies and Charles L. Harper, Jr.., Ch. 15, pp. 306-328, Cambridge University Press, 2004; http://research.physics.uiuc.edu/QI/photonics/sciam-supplemental.html
C. W. Misner, J. A. Wheeler, Classical Physics as Geometry, Annals of Physics, Volume 2, Issue 6, p. 525-603, 1957.
Geometrodynamics, Wikipedia, https://en.wikipedia.org/wiki/Geometrodynamics
V. Turaev, Quantum Invariants of knots and 3-Manifolds.
L. H. Kauffman, S. L. Lins, Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds, AM-134, Princeton University Press, 1994.
L. Kauffman, S. J. Lomonaco Jr., Topological Quantum Information Theory.
Z. Merali, “Entangled in the free will debate”, New Scientist, 4 August 2007, p. 10-11.
R.~Britto, F.~Cachazo, B.~Feng and E.~Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett., Vol. 94, 181602 (2005), hep-th/0501052, doi: 10.1103/PhysRevLett.94.181602.
[QuantaMag] Natalie Wolchover, A jewel at the heart of Quantum Physics, Quanta Magazine, Sept. 2013, https://www.quantamagazine.org/physicists-discover-geometry-underlying-particle-physics-20130917/
N.~Arkani-Hamed, F.~Cachazo and J.~Kaplan, What is the Simplest Quantum Field Theory?, JHEP Vol. 1009, 016 (2010), doi: 10.1007/JHEP09(2010)016, hep-th/0808.1446.
N. Christenson, L. M. Ionescu, A Hopf algebra approach to BCFW recursion, work in progress, 2017.
Arcticle History
Submitted: May 30, 2017
Accepted: Jul. 30, 2017
Published: Sep. 14, 2017
The American Association for Science and Technology (AASCIT) is a not-for-profit association
of scientists from all over the world dedicated to advancing the knowledge of science and technology and its related disciplines, fostering the interchange of ideas and information among investigators.
©Copyright 2013 -- 2019 American Association for Science and Technology. All Rights Reserved.