We found new class of solutions to the Einstein-Maxwell system of equations for charged quark matter within the framework of MIT Bag Model considering a gravitational potential Z(x) proposed by Thirukkanesh and Ragel (2013), which depends on an adjustable parameter n. Variables as the energy density, charge density, pressure and the metric functions are written in terms of elementary and polinominal functions. We show that the form chosen for the gravitational potential allows obtain physically acceptable solutions with any value of the adjustable parameter.
Gravitational Potential, Adjustable Parameter, Einstein-Maxwell System, Energy Density, Charged Quark Matter, MIT Bag Model
[1]
Bicak, J.(2006). Einstein equations: exact solutions, Encyclopedia of Mathematical Physics, 2, 165-173.
[2]
Dey, M, Bombaci, I, Dey, J, Ray, S and Samantra, B.C. (1998). Phys. Lett. B438,123.
[3]
Itoh,N.(1970). Prog. Theor. Phys.44, 291.
[4]
Komathiraj, K., and Maharaj,S.D. (2008). Classes of exact Einstein-Maxwell solutions, Gen. Rel.Grav., 39, 2079-2093.
[5]
Herrera, L., and Santos, N.O. (1997), Phys. Rep.286, 53.
[6]
Cosenza, M., Herrera, L., Esculpi, M. and Witten, L.(1981), J.Math.Phys., 22(1), 118.
[7]
Gokhroo, M.K., and Mehra. A.L. (1994). Anisotropic spheres with variable energy density in general relativity, Gen.Relat.Grav., 26(1), 75-84.
[8]
Herrera, L. (1992), Phys.Lett., A165, 206.
[9]
Komathiraj, K., and Maharaj, S.D.(2007). Analytical models for quark stars, Int.J.Mod. Phys., D16, pp. 1803-1811.
[10]
Malaver, M. (2009). Análisis comparativo de algunos modelos analíticos para estrellas de quarks, Revista Integración, 27, 125-133.
[11]
Thirukkanesh, S., and Maharaj, S.D. (2008). Charged anisotropic matter with linear equation of state, Class. Quantum Gravity, 25, 235001.
[12]
Thirukkanesh, S., and Ragel, F.C. (2013). A class of exact strange quark star model, PRAMANA-Journal of physics, 81(2), 275-286.
[13]
Feroze, T. and Siddiqui, A. (2011). Charged anisotropic matter with quadratic equation of state, Gen. Rel. Grav., 43, 1025-1035.
[14]
Malaver, M. (2014). Strange Quark Star Model with Quadratic Equation of State, Frontiers of Mathematics and Its Applications., 1(1), 9-15.
[15]
Takisa, P.M., and Maharaj, S.D. (2013). Some charged polytropic models, Gen.Rel.Grav., 45, 1951-1969.
[16]
Thirukkanesh, S., and Ragel, F.C. (2012). Exact anisotropic sphere with polytropic equation of state, PRAMANA-Journal of physics, 78(5), 687-696.
[17]
Malaver, M. (2013). Analytical model for charged polytropic stars with Van der Waals Modified Equation of State, American Journal of Astronomy and Astrophysics, 1(4), 41-46.
[18]
Malaver, M. (2013). Regular model for a quark star with Van der Waals modified equation of state, World Applied Programming., 3, 309-313.
[19]
Mak, M.K., and Harko, T. (2004). Quark stars admitting a one-parameter group of conformal motions, Int.J.Mod.Phys, D13, 149-156.
[20]
Durgapal, M.C., and Bannerji, R. (1983). New analytical stellar model in general relativity, Phys.Rev. D27, 328-331.
[21]
Jotania,K., and Tikekar, R. (2006). Int.J.Mod.Phys.D15, 1175.