About Communications       Author's Guide       Reviewers       Editorial Members       Archive
Volume 8
Volume 7
Volume 6
Volume 5
Volume 4
Volume 3
Volume 2
Volume 1
AASCIT Communications | Volume 2, Issue 3 | Apr. 21, 2015 online | Page:50-54
New Technologies in Membrane Separation Field: A Brief Survey
The main purpose of this short article was to introduce a membrane technology for diverse application including water desalination, algae separation, chiral separation, energy production and gas separation. A wonderful period for membrane investigation and development started at the beginning of the seventies. The membranes and related modules for reverse osmosis (RO), electrodialysis (ED), ultrafiltration (UF) and microfiltration (MF) had mostly been developed in this period. A great success in the membrane field was achieved in the decade 1980 concerning the development of new membrane processes such as seawater and brackish water desalination, pure and ultrapure water production, separation, purification and concentration of various liquids by membrane technology were applied on medium and large scale. At the same decades, gas separation (GS) membrane development also started. Studies on membrane distillation (MD), pervaporation (PV), membrane extraction (MEx), membrane phase separation (MPS), inorganic membranes (IM) and membrane reactors (MR), membrane bioreactors (MBR) were also started. In 1990s, composite membranes for RO and NF (nanofiltration) were manufactured on pilot scale. At present, new technologies and new processing techniques on membrane production are constantly being revealed and invented. Membrane separation replaces or supplements these techniques by the use of selectively permeable barriers, with pores sized to permit the passage of water molecules, chiral drugs, micro-algae but small enough to retain a wide range of particulate and dissolved compounds, depending on their nature. The membranes are made from materials such as thin organic polymer films, thin film coating monomer materials, bioinspired materials for coating, depending on the applications. Membranes are manufactured in different forms such as hollow fibers or flat sheets. The studies of these membranes along with their diverse application briefly explain in this brief survey.
Pravin G. Ingole, Korea Institute of Energy Research (KIER) 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343, South Korea.
Neha P. Ingole, Department of Biology, Chungnam National University, Daejeon 305-764, South Korea.
Polymer Membrane, Water Desalination, Chiral Separation, Algae Separation, Gas Separation, Energy Production
A. Hudd, Ink-Jet Printing Technologies. In The Chemistry of Inkjet Inks 1st edition, Magdassi, S.; Ed.; World Scientific Publishing: 2009, 3.
E. Sachlos, D.A. Wahl, J.T. Triffitt, J.T. Czernuszka, Acta Biomater. 4 (2008) 1322.
Z. Zhang, X. Zhang, Z. Xin, M. Deng, Y. Wen, Y. Song, Nanotechnology 42 (2011) 425601.
H. Sirringhaus, S. Tatsuya, Materials Research Society Bulletin (2003) 802.
P. Calvert, Chemistry of Materials 13 (2001) 3299.
P.G. Ingole, K. Singh, H.C. Bajaj. Sep. Sci. Technol. 46 (2011) 1898.
P.G. Ingole, K. Singh, H.C. Bajaj, Desalination 281 (2011) 413.
P.G. Ingole, N.R. Thakare, K.H. Kim, H.C. Bajaj, K. Singh, H.K. Lee. New J. Chem. 37 (2013) 4018.
P.G. Ingole, H.C. Bajaj, K. Singh. Desalination 343 (2014) 75.
P.G. Ingole, H.C. Bajaj, K. Singh. Desalination 305 (2012) 54.
X. Sun, C. Wang, Y. Tong, W. Wang, J. Wei, Algal Research 2 (2013) 437.
M. Daroch, S. Geng, G. Wang, Applied Energy, 102 (2013) 1371.
Y. He, D.M. Bagley, K.T. Leung, S.N. Liss, B.-Q. Liao, Biotechnology Advances 30 (2012) 817.
J.-B. Castaing, A. Massé, M. Pontié, V. Séchet, J. Haure, P. Jaouen, Desalination 253 (2010) 71.
M. Agbakpe, S. Ge, W. Zhang, X. Zhang, P. Kobylarz, Bioresource Technol. 166 (2014) 266.
C.-W. Tsai, C. Tsai, R.-C. Ruaan, C.-C. Hu, K.-R. Lee, ACS Appl. Mater. Interfaces 5 (2013) 5563.
P.G. Ingole, W. Choi, K.H. Kim, C.H. Park, W.K.Choi, H.K. Lee, Chem. Eng. J. 243 (2014) 137.
O.C. David, D. Gorri, A. Urtiaga, I. Ortiz, J. Membr. Sci. 378 (2011) 359.
K.H. Kim, P.G. Ingole, J.H. Kim, H.K. Lee, Chem. Eng. J. 233 (2013) 242.
X. Yu, Zhi Wang, Zhihong Wei, Shuangjie Yuan, Juan Zhao, Jixiao Wang, Shichang Wang, J. Membr. Sci. 362 (2010) 265.
L.M. Robeson, J. Membr. Sci. 320 (2008) 390.
S. Wang, Y. Liu, S. Huang, H. Wu, Y. Li, Z. Tian, Z. Jiang. J. Membr. Sci. 460 (2014) 62.
I. Taniguchi, T. Kai, S. Duan, S. Kazama, H. Jinnai. J. Membr. Sci. 475 (2015) 175.
V. Nafisi, M.-B. Hägg. J. Membr. Sci. 459 (2014) 244.
H. Lin, Z. He, Z. Sun, J. Vu, A. Ng, M. Mohammed, J. Kniep, T.C. Merkel, T. Wu, R.C. Lambrecht, J. Membr. Sci. 457 (2014) 149.
K.H. Kim, W.K. Choi, H.D. Jo, J.H. Kim, H.K. Lee, Fuel Proc. Technol. 121 (2014) 96.
N. V. Blinova, F. Svec. J. Mater. Chem. A, 2 (2014) 600.
Arcticle History
Submitted: Feb. 25, 2015
Accepted: Mar. 18, 2015
Published: Apr. 21, 2015
The American Association for Science and Technology (AASCIT) is a not-for-profit association
of scientists from all over the world dedicated to advancing the knowledge of science and technology and its related disciplines, fostering the interchange of ideas and information among investigators.
©Copyright 2013 -- 2019 American Association for Science and Technology. All Rights Reserved.