About Communications       Author's Guide       Reviewers       Editorial Members       Archive
Archive
Volume 8
2021
Volume 7
2020
Volume 6
2019
Volume 5
2018
Volume 4
2017
Volume 3
2016
Volume 2
2015
Volume 1
2014
AASCIT Communications | Volume 2, Issue 2 | Mar. 11, 2015 online | Page:29-34
Air Gauging: Still Some Room for Development
Abstract
In the paper, history, present state and perspectives of air gauging are presented. The dimensional measurement with pressured air is known for almost 100 years. Its rapid development has taken place mostly in the years of the World War II, and during the next three decades many research papers have been published throughout the World. Some decline in the industrial application of the air gauges took place at the end of 20th century, but nowadays many enterprises rediscover merits of the air operated dimensional measurement.
Authors
[1]
Jermak Cz. J., Poznan University of Technology, Institute of Mechanical Technology, Division of Metrology and Measurement Systems, Piotrowo 3, PL-60965 Poznan, Poland.
[2]
Rucki M., Poznan University of Technology, Institute of Mechanical Technology, Division of Metrology and Measurement Systems, Piotrowo 3, PL-60965 Poznan, Poland.
Keywords
Measurement, Accuracy, Air Gauge, Quality, Mechanical Engineering
Reference
[1]
Tanner C.J. (1958), Air gauging – history and future developments. “Institution of Production Engineers Journal”, Volume 37, Issue 7, pp. 448-462.
[2]
Osanna H. (2007), Metrology in general and form measurements for applications in modern industry, for medical applications and for technological development. Wyd. Politechniki Świetokrzyskiej, Kielce.
[3]
Finkelstein L. (2009), Widely-defined measurement – An analysis of challenges, “Measurement” Vol. 42, pp. 1270-1277.
[4]
Valicek J. et al. (2007), An investigation of surfaces generated by abrasive waterjets using optical detection. “Strojniški vestnik” – Jour. of Mech. Eng., Vol. 53, No. 4, p. 224-232.
[5]
Grandy D., Koshy P., Klocke F. (2009), Pneumatic non-contact roughness assessment of moving surfaces. „CIRP Annals – Manufacturing Technology”, Vol. 58/1, pp. 515-518.
[6]
Ramsden J.J., Freeman J. (2009), The nanoscale. “Nanotechnology Perceptions” Vol. 5, No. 1, pp. 3-26.
[7]
Töpfer S., Nehse U., Linss G. (2007), Automated inspections for dimensional micro- and nanometrology. “Measurement” No 40, pp. 243-254.
[8]
Mazzeo A.D. et al. (2009), Atomic force microscope for accurate dimensional metrology. “Precision Engineering” Vol. 33, Issue 2, pp. 135-149.
[9]
Wieczorkowski S. (1995), Automatyczna regulacja prędkości obrotów wrzecion napędzanych mikroturbinami pneumatycznymi. Zeszyty naukowe Politechniki Łódzkiej, nr 703, Łódź.
[10]
Vacharanukul K., Mekid S. (2005), In-Process Dimensional Inspection Sensors. “Measurement” Vol. 38, No. 3, pp. 204-218.
[11]
Wang Y.H. et al. (2005), An Automatic Sorting System Based on Pneumatic Measurement. “Key Engineering Materials” Vols. 295-296, pp. 563-568.
[12]
Menzies I., Koshy P. (2009), In-process detection of surface porosity in machined castings, “International Journal of Machine Tools & Manufacture” Vol. 49, Issue 6, pp. 530-535.
[13]
Jablonski R. (2000), Measurement of Extremely Long Microbores by Application of Laser Metrology, “Measurement” Vol. 28, pp. 139-145.
[14]
Kondaszewski W.W., Lotze W. (1979), Urządzenia pomiarowo-sterujące obrabiarek. WNT, Warszawa.
[15]
Handbook of Measuring System Design (2005), Vol. 1, ed. by P.H. Sydenham & R. Thorn. Wiley, London.
[16]
Goldberg R. (2009), New Products. “IEEE Instrumentation and Measurement Magazine” Vol. 12, pp. 54-59.
[17]
Farago F.T., Curtis M.A. (1994), Handbook of Dimensional Measurement. Industrial Press Inc., New York.
[18]
Rucki M. (2011), Właściwości dynamiczne wysokociśnieniowych czujników pneumatycznych o zmniejszonych komorach pomiarowych. Wyd. Politechniki Poznańskiej, Poznań.
[19]
Jermak Cz. J., Rucki M. (2009), Evaluation of the response time of air gauges in industrial applications. “Metrology and Measurement Systems” Vol. 16, No. 4, pp. 689-700.
[20]
Zelczak A. (2004), Przyczynek do racjonalizacji pomiarów średnic otworów przyrządami pneumatycznymi. „Przegląd mechaniczny”, R. LXIII, z. 2, s. 11-16.
[21]
Jermak Cz.J., Cellary A., Rucki M. (2010), Novel method of non-contact out-of-roundness measurement with air gauges. Proceedings of the euspen 10th International Conference, 31.05-4.06.2010, Delft, Netherland, pp. 71-74.
[22]
Rucki M., Barisic B., Varga G. (2010), Air Gauges as a Part of the Dimensional Inspection Systems. “Measurement” Vol. 43, Issue 1, pp. 83-91.
[23]
Mennesson M. (1932), Methode de Mesure de Haute Precision des Longueurs et Epaisseurs. Comptes Rendus des Seances de l'Academie des Sciences 194 (25.4.1932), pp. 1459-1461.
[24]
Fullmer I.H. (1966), Dimensional Metrology, Subject-classified with Abstracts. Washington.
[25]
Goethel E.F. (1947), Pneumatisches Längenmeßverfahren. “Archiv fur Technisches Messen” V 1121-6, Juli.
[26]
Molle R. (1950), Les Lois de la Metrologie Pneumatique, “Rev. Gen de Mecanique” v34 n 13 Jan pp. 26-30.
[27]
Цидулко Ф. В. (1965), Динамика пневматических приборов для линейных измерений, изд-во Машиностроение, Москва.
[28]
Mierzejewski H. (1954), Szybkość działania czujnika pneumatycznego, “Przegląd mechaniczny” XIII, № 4, pp. 110-111.
[29]
Yribarren R. (1955), The pneumatic method applied to dynamic measurement. Proceedings of the Symposium on Engineering dimensional metrology, England, 1953. London, , pp. 225-240.
[30]
Дмитриев В. Н. и Чернышев В. И. (1958), Расчет временных характеристик проточных пневматических камер, «Автоматика и телемеханика», № 12, pp. 1118-1125.
[31]
Joyce A.H., Rugg K.E. (1958), Dynamic Air Gaging Reduces Cycle Time in Precision Measurement, Gen Motors Eng J v5 n5, pp. 39-32.
[32]
Lotze W. (1968), Kritische Einschatzung und Beitrage zur Etwicklung der Pneumatischen Längenmesstechnik, Habilitation, TU Dresden.
[33]
Breitinger R. (1969), Fehlerquellen beim pneumatischen Längenmessen, Dissertation, TU Stuttgart.
[34]
Погорелов В. И. (1971), Газодинамические расчеты пневматических приборов, изд-во Машиностроение, Москва.
[35]
Педь Е. И. (1976), Эжекторные преобразователи с выносным измерительным соплом для линейных измерений, «Измерительная техника» №2, стр. 17-18.
[36]
Załmanzon W. A. (1971), Teoria elementów stosowanych w technice strumieniowej, WNT, Warszawa.
[37]
Балакшин О. Б. (1964), Автоматизация пневматического контроля размеров в машиностроении, изд-во Машиностроение, Москва.
[38]
Сентяков Б.А., Исупов Г.П. (1977), Классификация бесконтактных пневматических датчиков положения. «Станки и инструмент» № 1, стр. 27-28.
[39]
Волосов С.С. (1972), Приборы для автоматического контроля в машиностроении, изд-во Машиностроение, Москва.
[40]
Lammel L., Osiadacz A. (1974), Sygnały pneumatyczne w automatyce, WNT, Warszawa.
[41]
Cellary A., Jermak Cz. J. (1997), Dynamics of One-Cascade Pneumatic Sensor for the Length Measuring, in: Optoelectronic and Electronic Sensors II Congress, Washington, Vol. 3054, pp. 36-39.
[42]
Rucki M., Barisic B., Ocenasova L. (2010). Dynamic calibration of air gauges, “Archives of Mechanical Technology and Automation” Vol. 30, No. 2, pp. 129-134.
[43]
Piotrowski J. (2002), Podstawy miernictwa. WNT, Warszawa.
[44]
Miłek M. (2006), Metrologia elektryczna wielkości nieelektrycznych, Oficyna Wydawnicza Uniwersytetu Zielonogórskiego, Zielona Góra.
[45]
Hennessy R. (2005), Use air to improve measurements; manufacturers turn to air gaging for high-resolution measurements, “Quality Magazine” (May) pp. 30-33.
[46]
Crnojevic C. et al. (1997), The Influence of the Regulator Diameter and Injection Nozzle Geometry on the Flow Structure in Pneumatic Dimensional Control Systems. “Journal of Fluids Engineering” No. 119, pp. 609-615.
[47]
Jermak Cz. J., Barisic B., Rucki M., (2010), Correction of the metrological properties of the pneumatic length measuring gauges through changes of the measuring nozzle head surface shape. “Measurement” Vol. 43, pp. 1217-1227.
[48]
Jermak Cz.J., Rucki M. (1998), Pneumatic Gauge With Polygonal Measuring Nozzles. Proceedings of the Conference Interpartner-98, Kharkov – Alushta, pp. 313-315.
[49]
Xie et al. (2001), Theoretical and Experimental Studies of a Novel Cone-Jet Sensor, “IEEE Transactions on Instrumentation and Measurement”, Vol. 50, No. 5, pp. 1081-1084.
[50]
Jermak Cz. J., Rucki M. (2001), Pneumatic Injector as a Length Measuring Sensor, „Strojnícky Časopis” nr 1, R. 52, pp. 32-38.
[51]
Jermak Cz. J., Rucki M., Marlewski A. (1997), Measuring of the Cylindrical Details by the Double-Nozzled Pneumatic Sensor, 8th International DAAAM Symposium, University of Zagreb, ICCU Dubrovnik, pp. 145-146.
[52]
Chuchro Z., Jermak Cz. J. (2001), Pneutronik B25 i B50 – nowa generacja pneumatycznych przyrządów do pomiaru długości. Materiały konferencyjne „Manufacturing 2001”, t. 2, Poznań 8-9.11.2001, pp. 153-160.
[53]
Jermak Cz. J., Rucki M. (2012), Air Gauging: Static and Dynamic Characteristics, IFSA, Barcelona.
[54]
Jermak Cz. J. (2012), Teoretyczne i praktyczne aspekty kształtowania statycznych właściwości metrologicznych pneumatycznych przetworników długości, Wyd. Politechniki Poznańskiej, Poznań.
[55]
Волков А.Л., Серко А.Л. (1980), Пути улучшения метрологических характеристик пневматических приборов активного контроля, «Измерительная техника» № 10, стр. 24-26.
[56]
Rucki M., Jermak Cz. J. (2012), Dynamic Properties of Small Chamber Air Gages, “Journal of Dynamic Systems, Measurement, and Control” Vol. 134, Issue 1, p. 011001 (6 pages).
[57]
Shiraishi M., Yamagiwa T., Ito A. (2002), Practical dimensional error control and surface roughness inspection in turning. Proceedings of ASME-2002 Mechanical Engineering Congress and Exposition, New Orleans, pp. 45-51.
[58]
Пудовкин А.П., Чернышов В.Н., Колмаков А.В. (2004), Активный контроль геометрических размеров вкладышей подшипников скольжения, «Измерительная техника» № 9, стр. 32-35.
[59]
Cellary A., Jermak Cz. J., Majchrowski R. (2010), Metody symulacyjne wyznaczenia błędów systemu do pomiaru odchyłki okrągłości metodą odniesieniową. “Pomiary, Automatyka, Kontrola” Vol. 56, nr 1, pp. 8-9.
[60]
Grandy D., Koshy P., Klocke F. (2009), Pneumatic non-contact roughness assessment of moving surfaces. „CIRP Annals – Manufacturing Technology”, Vol. 58/1, pp. 515-518.
[61]
Koshy P., Grandy D., Klocke F. (2011), Pneumatic non-contact topography characterization of finish-ground surfaces using multivariate projection methods. “Precision Engineering” Vol. 35, Issue 2, pp. 282-288.
[62]
Menzies I., Koshy P. (2009), In-process detection of surface porosity in machined castings, “International Journal of Machine Tools & Manufacture” Vol. 49, Issue 6, pp. 530-535.
[63]
Wierszko M. et al. (2004), Wzmacniacze przysłonowe pneumatycznych czujników ciśnienia krwi. Pneumatyka” nr 14, pp. 35-37.
[64]
Thomas T. et al. (1998), Nanometer-level autofocus air gauge, “Precision Engineering” Vol. 22, Issue 4, pp. 233-242.
Arcticle History
Submitted: Dec. 17, 2014
Accepted: Mar. 6, 2015
Published: Mar. 11, 2015
The American Association for Science and Technology (AASCIT) is a not-for-profit association
of scientists from all over the world dedicated to advancing the knowledge of science and technology and its related disciplines, fostering the interchange of ideas and information among investigators.
©Copyright 2013 -- 2019 American Association for Science and Technology. All Rights Reserved.