ISSN: 2375-3765
American Journal of Chemistry and Application  
Manuscript Information
 
 
Sequestration of PCBs Congeners Present in Askarel Formulation by Adsorption on the Prepared Activated Carbons
American Journal of Chemistry and Application
Vol.5 , No. 5, Publication Date: Sep. 20, 2018, Page: 67-78
123 Views Since September 20, 2018, 94 Downloads Since Sep. 20, 2018
 
 
Authors
 
[1]    

Oumarou Tidjani Malam Mani, Département de Chimie, Faculté des Sciences et Techniques, Université Abdou Moumouni de Niamey, Niger.

[2]    

Rabani Adamou, Département de Chimie, Faculté des Sciences et Techniques, Université Abdou Moumouni de Niamey, Niger.

[3]    

Ali Ibrah Landi, Département de Chimie, Faculté des Sciences et Techniques Université Dan Dicko Dankoulodo de Maradi, Niger.

[4]    

Moutari Souley Kallo, Département de Chimie, Faculté des Sciences et Techniques, Université Abdou Moumouni de Niamey, Niger.

[5]    

Hassidou Saidou, Département de Chimie, Faculté des Sciences et Techniques Université Dan Dicko Dankoulodo de Maradi, Niger.

 
Abstract
 

The difficulties of managing polychlorinated biphenyls (PCBs), a persistent organic pollutant inherited from the last century, constitute a major environmental problem, due to the lack of efficient, low-cost and accessible techniques of its destruction. The options of adsorption on activated carbon, prepared from available local agroforestry by-product appear to be an effective method that reduces the bio-accumulation character of PCBs. The adsorption of PCBs molecules in aqueous solution (ethanol-water, 1:10) on chemically activated carbons with H3PO4 at different concentrations (5%, 10%, 20%, 30%) was investigated. An UV spectrophotometer is used to assess the adsorption. The adsorption rate (> 90%) and the adsorption capacity (170.24 mg/g) of the activated carbon showed the performance of the prepared activated carbon. All experiments were carried out at room temperature. The effects of contact time, absorbent masse, initial concentration, pH solution, were evaluated. The resulted adsorption data applied to four isotherm models (Freundlich (R2 =0.90), Langmuir (R2 =0.95), Tenkim (R2 =0.96), and Dubinin-Radushkevich (R2 =0.94)), lead to the interpretation of the observed adsorption phenomena. The calculated free energy E (5.06 Kj) indicated that the physio-sorption played a significant role in this adsorption mechanism. The adsorption process was entirely controlled by intra particle diffusion, and followed the pseudo-second order mechanism. These adsorption performances combined with a photo-radiation of contaminated PCBs solution could be an easier way to destroy PCBS, that is an ecologically rational elimination of POPs.


Keywords
 

Askarel, Hyphaene tabeika Fruits, Adsorption, PCBs Persistence, Organic Pollutants


Reference
 
[01]    

Ayandele, A. A., Fagade, O. E., & Adenegan, A. A. (2012). Effect of ammonium salts on the biodegradation of used transformer oil using locally isolated microorganisms. Agric. Biol. JN Am, 3, 131-139.

[02]    

Mani, O. T. M., Amadou, I., Adamou, R., & Salamou Z., S. (2018). Contamination potentielle des aliments par des polychlorobiphényles (PCBs): Connaissance du polluant et évaluation de la perception du risque. International Journal of Biological and Chemical Sciences, 12 (1), 168-179.

[03]    

Oziolor, E. M., Apell, J. N., Winfield, Z. C., Back, J. A., Usenko, S., & Matson, C. W. (2018). Polychlorinated biphenyl (PCB) contamination in Galveston Bay, Texas: Comparing concentrations and profiles in sediments, passive samplers, and fish. Environmental Pollution, 236, 609-618

[04]    

Werner, D., Higgins, C. P., & Luthy, R. G. (2005). The sequestration of PCBs in LakeHartwell sediment with activated carbon. Water Research, 39 (10), 2105-2113

[05]    

Langlois, V. S., Rutter, A., & Zeeb, B. A. (2011). Activated carbon immobilizes residual polychlorinated biphenyls in weathered contaminated soil. Journal of environmental quality, 40 (4), 1130-1134.

[06]    

Sun, X., & Ghosh, U. (2007). PCB bioavailability control in Lumbriculus Variegates through different modes of activated carbon addition to sediments. Environmental science & technology, 41 (13), 4774-4780

[07]    

Yangui, R. B. E. (2013). Removal of water pollutants by adsorption on activated carbon prepared from olive-waste cakes and by biological treatment using ligninolytic fungi (Doctoral dissertation, Ph. D. Thesis, Universitat Autònoma de Barcelona, Barcelona, Spain.

[08]    

Mcleod, Pamela B., Van Den Heuvel‐Greve, Martine J., Luoma, Samuel N., et al. (2007) Biological uptake of polychlorinated biphenyls by Macoma balthica from sediment amended with activated carbon. Environmental Toxicology and Chemistry, 26 (5), 980 987,

[09]    

Beckingham, Barbara et GHOSH, Upal (2011). Field-scale reduction of PCB bioavailability with activated carbon amendment to river sediments. Environmental science & technology, 45 (24), 10567 10574.

[10]    

Baccar, R., Blánquez, P., Bouzid, J., et al (2013). Modeling of adsorption isotherms and kinetics of a tannery dye onto an activated carbon prepared from an agricultural by-product. Fuel processing technology, 106, 408-415.

[11]    

Tchakala, I., Bawa, L. M., Djaneye-Boundjou, G., Doni, K. S., & Nambo, P. (2012). Optimisation du procédé de préparation des Charbons Actifs par voie chimique (H3PO4) à partir des tourteaux de Karité et des tourteaux de Coton. International Journal of Biological and Chemical Sciences, 6 (1), 461-478.

[12]    

Gueye, M., Richardson, Y., Kafack, F. T., & Blin, J. (2014). High efficiency activated carbons from African biomass residues for the removal of chromium (VI) from wastewater. Journal of Environmental Chemical Engineering, 2 (1), 273-281.

[13]    

Andric, S. A., Tatjana, S., Kostic Snezana M., Dragisic Nebojsa, L., Andric Stanko, S., Stojilkovic Radmila Kovacevic Z. (2000). Acute effects of polychlorinated biphenyl- Containing and –free transformer fluids on rat testicular steroidogenesis. Env. Health Persp., 10 (108), 955-959.

[14]    

Iskenderova, Z. I., Djavanshirova, A. A., & Kurbanov, M. A. (2016). A study of photolysis of polychlorobiphenyl-containing transformer oil by UVspectroscopy. Optics and Spectroscopy, 120 (5), 823-825.

[15]    

Sharma, A., Sharma, G., Naushad, M., Ghfar, A. A., & Pathania, D. (2018). Remediation of anionic dye from aqueous system using bio-adsorbent prepared by microwave activation. Environmental technology, 39 (7), 917-930.

[16]    

Pezoti, O., Cazetta, A. L., Bedin, K. C., Souza, L. S., Martins, A. C., Silva, T. L. &, Almeida, V. C. (2016). NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal: kinetic, isotherm and thermodynamic studies. Chemical Engineering Journal, 288, 778-788.

[17]    

Cho, Y. M., Ghosh, U., Kennedy, A. J., Grossman, A., Ray, G., Tomaszewski, J. E., & Luthy, R. G. (2009). Field application of activated carbon amendment for in-situ stabilization of polychlorinated biphenyls in marine sediment. Environmental Science & Technology, 43 (10), 3815-3823.

[18]    

Gao, Y., Yue, Q., & Gao, B. (2016). Insights into properties of activated carbons prepared from different raw precursors by pyrophosphoric acid activation. Journal of Environmental Sciences, 41, 235-243.

[19]    

Shang, H., Lu, Y., Zhao, F., Chao, C., Zhang, B., & Zhang, H. (2015). Preparing high surface area porous carbon from biomass by carbonization in a molten salt medium. RSC Advances, 5 (92), 75728-75734.

[20]    

Tounsadi, H., Khalidi, A., Farnane, M., Abdennouri, M., & Barka, N. (2016). Experimental design for the optimization of preparation conditions of highly efficient activated carbon from Glebionis coronaria L. and heavy metals removal ability. Process Safety and Environmental Protection, 102, 710-723.

[21]    

Xu, W., Zhao, Q., Wang, R., Jiang, Z., Zhang, Z., Gao, X., & Ye, Z. (2017). Optimization of organic pollutants removal from soil eluent by activated carbon derived from peanut shells using response surface methodology. Vacuum, 141, 307-315

[22]    

Liu, C., Omer, A. M., & Ouyang, X. K. (2018). Adsorptive removal of cationic methylene blue dye using carboxymethyl cellulose/k-carrageenan/activated montmorillonite composite beads: Isotherm and kinetic studies. International journal of biological macromolecules, 106, 823-833.

[23]    

Adeyinka, G. C., & Moodley, B. (2018). Kinetic and thermodynamic studies on partitioning of polychlorinated biphenyls (PCBs) between aqueous solution and modeled individual soil particle grain sizes. Journal of Environmental Sciences

[24]    

Xu, W., Zhao, Q., Wang, R., Jiang, Z., Zhang, Z., Gao, X., & Ye, Z. (2017). Optimization of organic pollutants removal from soil eluent by activated carbon derived from peanut shells using response surface methodology. Vacuum, 141, 307-315.

[25]    

Björklund, K., & Li, L. Y. (2017). Adsorption of organic stormwater pollutants onto activated carbon from sewage sludge. Journal of environmental management, 197, 490-497.

[26]    

Baccar, R., Sarrà, M., Bouzid, J., Feki, M., & Blánquez, P. (2012). Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product. Chemical engineering journal, 211, 310-317.

[27]    

Cho, Y. M., Werner, D., Choi, Y., & Luthy, R. G. (2012). Long-term monitoring and modeling of the mass transfer of polychlorinated biphenyls in sediment following pilot-scale in-situ amendment with activated carbon. Journal of contaminant hydrology, 129, 25-37.

[28]    

Kan, Y., Yue, Q., Liu, S., & Gao, B. (2018). Effects of Cu and CuO on the preparation of activated carbon from waste circuit boards by H3PO4 activation. Chemical Engineering Journal, 331, 93-101.

[29]    

Adeyinka, G. C., & Moodley, B. (2018). Kinetic and thermodynamic studies on partitioning of polychlorinated biphenyls (PCBs) between aqueous solution and modeled individual soil particle grain sizes. Journal of Environmental Sciences.

[30]    

McDonough, K. M., Fairey, J. L., & Lowry, G. V. (2008). Adsorption of polychlorinated biphenyls to activated carbon: Equilibrium isotherms and a preliminary assessment of the effect of dissolved organic matter and biofilm loadings. Water Research, 42 (3), 575-584.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership