International Journal of Bioinformatics and Computational Biology  
Manuscript Information
 
 
In silico Analysis of Liriodenine as a Novel ATP-Competitive PIM1 Inhibitor in some Cancer Cell-Lines of Haematopoietic and Prostate Origins
International Journal of Bioinformatics and Computational Biology
Vol.3 , No. 1, Publication Date: May 18, 2018, Page: 17-27
1511 Views Since May 18, 2018, 639 Downloads Since May 18, 2018
 
 
Authors
 
[1]    

Michael Aderibigbe Arowosegbe, Centre for Biocomputing and Drug Development, Adekunle Ajasin University, Akungba-Akoko, Ondo, Nigeria; Department of Biochemistry, Lagos State University, Ojo, Lagos, Nigeria.

[2]    

Olaposi Idowu Omotuyi, Centre for Biocomputing and Drug Development, Adekunle Ajasin University, Akungba-Akoko, Ondo, Nigeria.

[3]    

Oluwatosin Benedict Adu, Department of Biochemistry, Lagos State University, Ojo, Lagos, Nigeria.

[4]    

Segun Adeola, Department of Biochemistry, Lagos State University, Ojo, Lagos, Nigeria.

[5]    

Bimpe Folasade Ogungbe, Department of Biochemistry, Lagos State University, Ojo, Lagos, Nigeria.

[6]    

Gabriel Eniafe, Centre for Biocomputing and Drug Development, Adekunle Ajasin University, Akungba-Akoko, Ondo, Nigeria.

[7]    

Oluwafemi Jude Ogunmola, Department of Biology (Storage Technology), Federal University of Technology, Akure, Ondo, Nigeria.

 
Abstract
 

PIM1–an oncogenic kinase–is overexpressed in a number of haematopoietic malignancies as well as solid tumors such as prostate cancer where it correlates with poor prognosis. Several studies have elucidated the roles of PIM1 in cell-cycle progression, cell survival, and tumourigenesis. Also, the distinctive characteristics of the ATP binding pocket of this kinase have been vividly reported. Thus, PIM1 is an attractive target for the design of selective pharmacological inhibitors. In silico methods were executed to investigate the non-ATP mimetic properties of liriodenine in comparison with the co-crystallized 9G5 and CX-4945, which are potent ATP-competitive PIM inhibitors. Consequently, the outcome of our study depicted the interactions of liriodenine with catalytic important aminoacyl residues in the ATP binding site of PIM1. Considering the ADME and cytotoxic parameters of the screened drug-like candidates together with CX-4945, we also showed that liriodenine displayed an improved probable ATP-competitive PIM1 inhibition when compared to CX-4945, a drug currently in Phase I/II clinical trials against cholangiocarcinoma. In the light of these findings, we put forward a valid argument, indicating that liriodenine can be preclinically/clinically researched as a potential targeted cancer therapy for haematopoietic malignancies as well as other solid tumours, most especially in prostate cancer.


Keywords
 

Haematopoietic Malignancies, Prostate, Inhibition, Liriodenine, PIM1, ADME


Reference
 
[01]    

Grassow MN, Aparicio CB, Cecilia Y, Perez M, Galvan SM, Cañamero M, Renner O, Carnero A; Pim1 kinase cooperates with hormone treatment to promote bladder and ureteral urothelial hyperplasia. Journal of carcinogenesis & mutagenesis (2014) 5: 161.

[02]    

Drygin D, Haddach M, Pierre F, Ryckman DM: Potential use of selective and nonselective pim kinase inhibitors for cancer therapy. Journal of medicinal chemistry (2012) 55: (19), 8199-8208.

[03]    

Liu, Z, He W, Gao J, Luo J, Huang X, Gao C: Computational prediction and experimental validation of a novel synthesized pan-pim inhibitor PI003 and its apoptosis-inducing mechanisms in cervical cancer. Oncotarget (2015) 6: (10), 8019–8035.

[04]    

Grassow MN, Aparicio CB, Carnero A: The pim family of serine/threonineKinases in cancer. Medicinal research reviews (2014) 34: 1, 136–159.

[05]    

Brault L, Gasser C, Bracher F, Huber K, Knapp S, Schwaller J: Pim serine/threonine kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers. Haematologica (2010) 95: 1004-1015.

[06]    

Liang C, Li Y: Use of regulators and inhibitors of Pim-1, a serine/threonine kinase, for tumour therapy (Review). Molecular medicine report (2014) 9: 2051-2060.

[07]    

Haddach M, Michaux J, Schwaebe MK, Pierre F, O’brien SF, Borsan C, Tran J, Raffaele N, Ravula S, Drygin D, Siddiqui-Jain A, Darjania L, Stansfield R, Proffitt C, Macalino D, Streiner N, Bliesath J, Omori M, Whitten JP, Anderes K, Rice WG, Ryckman DM: Discovery of cx-6258. a potent, selective, and orally efficacious pan-pim kinases inhibitor. Acs medicinal chemistry letters (2012) 3: 135−139.

[08]    

Kim J, Roh M, Abdulkadir SA: Pim1 promotes human prostate cancer cell tumorigenicity and c-MYC transcriptional activity. BMC Cancer (2010) 10: 248.

[09]    

Xu J, Zhnag T, Wang T, You L, Zhao Y: Pim kinases: an overview in tumors and recent advances in pancreatic cancer. Future oncology (2014) 10: 5.

[10]    

Gu J J, Wang Z, Reeves R, Magnuson N S: Pim1 phosphorylates and negatively regulates ask1-mediated apoptosis. Oncogene (2009) 28: 4261–4271.

[11]    

Tursynbay Y, Zhang J, Li Z, Tokay T, Zhumadilov Z, Wu D, Xie Y: Pim-1 kinase as cancer drug target: an update (Review). Biomedical reports (2016) 4: 140-146.

[12]    

Magnuson NS, Wang Z, Ding G, Reeves R: Why target pim1 for cancer diagnosis and treatment? Future oncology (2010) 6: 9.

[13]    

Horiuchi D, Camarda R, Zhou AY, Yau C, Momcilovic O, Balakrishnan S, Corella AN, Eyob H, Kessenbrock K, Lawson DA, Marsh LA, Anderton BN, Rohrberg J, Kunder R, Bazarov AV, Yaswen P, McManus MT, Rugo HS, Werb Z, Goga A: Pim1 kinase inhibition as a targeted therapy against triple-negative breast tumors with elevated myc expression. Nature medicine (2016) 22: 1321–1329.

[14]    

Nawijn MC, Alendar A, Berns A: For better or for worse: the role of pim oncogenes in tumorigenesis. Nature reviews cancer (2011) 11: 23–34.

[15]    

Xie, Y, Xie, Y: Pim1 kinase as a promise of targeted therapy in prostate cancer stem cells (Review). Molecular and clinical oncology (2016) 4: 13-17.

[16]    

Nakano H, Hasegawa T, Kojima H, Okabe T, Nagano T: Design and synthesis of potent and selective pim kinase inhibitors by targeting unique structure of atp-binding pocket. ACS Medicinal chemistry Letters (2017) 8 (5): 504–509.

[17]    

Zhao W, Qiu R, Li P, Yang J: Pim1: a promising target in patients with triple-negative breast cancer. Medical oncology (2017) 34: 142.

[18]    

Bogusz J, Zrubek K, Rembacz KP, Grudnik P, Golik P, Romanowska M, Wladyka B, Dubin G: Structural analysis of pim1 kinase complexes with atp-competitive inhibitors. Scientific reports (2017) 7: 13399.

[19]    

Mukaida N, Wang Y, Li Y: Roles of pim‐3, a novel survival kinase, in tumorigenesis. Cancer science (2011) 102 (8): 1437-1442.

[20]    

Garuti L, Roberti M, Bottegoni G: Non-atp competitive protein kinase inhibitors. Current medicinal chemistry (2010) 17 (25): 2804-2821 (18).

[21]    

Richmond W, Wogan M, Isbell J, Gordon WP: Interstrain differences of in vitro metabolic stability and impact on early drug discovery. Journal of pharmaceutical sciences (2010) 99 (11): 4463-4468.

[22]    

Daina A, Michielin O, Zoete V: Swissadme: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports (2017) 7: 42717.

[23]    

Paula da Silva CHT, Barreto da Silva V, Resende J, Rodrigues PF, Bononi FC, Benevenuto CG, Taft CA: Computer-aided drug design and admet predictions for identification and evaluation of novel potential farnesyltransferase inhibitors in cancer therapy. Journal of molecular graphics and modelling (2010) 6 (26): 513-523.

[24]    

Ntie-Kang F: An in silico evaluation of the admet profile of the StreptomeDB database. SpringerPlus (2013) 2: 353.

[25]    

Lagunin AA, Dubovskaja VI, Rudik AV, Pogodin PV, Druzhilovskiy DS, Gloriozova TA, Filimonov DA, Sastry NG, Poroikov VV: Clc-Pred: a freely available web-service for in silico prediction of human cell line cytotoxicity for drug-like compounds. Plos one (2018) 13 (1): e0191838.

[26]    

Fährrolfes R, Bietz S, Flachsenberg F, Meyder A, Nittinger E, Otto T, Volkamer A, Rarey M: Proteinsplus: a web portal for structure analysis of macromolecules. Nucleic Acids Research (2017).

[27]    

Kim W, Youn H, Kwon T, Kang J, Kim E, Son B, Yang HJ, Jung Y, Youn B: Pim1 kinase inhibitors induce radiosensitization in non-small cell lung cancer cells. Pharmacological Research (2013) 70 (1): 90-101.

[28]    

Fan R, Lu Y, Fang Z, Guo X, Chen Y, Xu Y, Lei Y, Liu K, Lin D, Liu L, Liu X: Pim-1 kinase inhibitor smi-4a exerts antitumor effects in chronic myeloid leukemia cells by enhancing the activity of glycogen synthase kinase 3β. Molecular Medicine Reports (2017) 16: 4603-4612.

[29]    

Sawaguchi Y, Yamazaki R, Nishiyama Y, Sasai T, Mae M, Abe A, Yaegashi T, Nishiyama H, Matsuzaki T: Rational design of a potent pan-pim kinases inhibitor with a rhodanine–benzoimidazole structure. Anticancer Research (2017) 37 (8): 4051-4057.

[30]    

Chandrika G, Mansi S, Sunil M, Malika K, Lidija P, Melanie H, Yali D, Chunhua S, Jonathon Lp, Bi-Hua T, Sinisa D: Casein kinase ii (ck2) as a therapeutic target for hematological malignancies. Current Pharmaceutical Design (2017) 23 (1): 95-107 (13).

[31]    

Cozza G, Sarno S, Ruzzene M, Girardi C, Orzeszko A, Kazimierczuk Z, Zagotto G, Bonaiuto E, Di Paolo ML, Pinna LA: Exploiting the repertoire of ck2 inhibitors to target dyrk and pim kinases. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics (2013) 1834 (7): 1402-1409.

[32]    

Koronkiewicz M, Chilmonczyk Z, Kazimerczuk Z, Orzeszko A: Deoxynucleosides with benzimidazoles as aglycone moiety are potent anticancer agents. European Journal of Pharmacology (2018) 620: 146-155.

[33]    

Nordin N, Majid NA, Hashim NM, Rahman MA, Hassan Z, Ali HM: Liriodenine, an aporphine alkaloid from Enicosanthellum pulchrum, inhibits proliferation of human ovarian cancer cells through induction of apoptosis via the mitochondrial signaling pathway and blocking cell cycle progression. Drug Design Development and Therapy (2015) 9: 1437–1448.

[34]    

Li L, Xu Y, & Wang B: Liriodenine induces the apoptosis of human laryngocarcinoma cells via the upregulation of p53 expression. Oncology Letters (2015) 9: 1121-1127.

[35]    

Chen C, Wu H, Chao W, Lee C: Review on pharmacological activities of liriodenine. African Journal of Pharmacy and Pharmacology (2013) 7 (18): 1067-1070.

[36]    

Chen C, Chen S, Chen C: Liriodenine induces g1/s cell cycle arrest in human colon cancer cells via nitric oxide- and p53-mediated pathway. Process Biochemistry (2012) 47 (10): 1460-1468.

[37]    

Chacón IC, González-Esquinca AR: Liriodenine alkaloid in Annona diversifolia during early development. Natural Product Research (2012) 26 (1): 42-49.

[38]    

Yao C, Cao X, Fu Z, Tian J, Dong W, Xu J, An K, Zhai L, Yu J: Boschniakia rossica polysaccharide triggers laryngeal carcinoma cell apoptosis by regulating expression of bcl-2, caspase-3, and p53. Medical science monitor (2017) 23: 2059 –2064.

[39]    

Lipinski CA: Lead- and drug-like compounds: the rule-of-five revolution. Drug discovery today technologies (2004) 1 (4): 337-341.

[40]    

Rybak AP, He L, Kapoor A, Cutz J, Tang D: Characterization of sphere-propagating cells with stem-like properties from du145 prostate cancer cells. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research (2011) 1813 (5): 683-694.

[41]    

Samarghandian S, Afshari JT, Davoodi S: Chrysin reduces proliferation and induces apoptosis in the human prostate cancer cell line pc-3. Clinics (2011) 66 (6): 1073-1079.

[42]    

Maier CJ, Maier RH, Rid R, Trost A, Hundsberger H, Eger A, Hintner H, Bauer JW, Onder K: PIM-1 kinase interacts with the DNA binding domain of the vitamin D receptor: a further kinase implicated in 1,25-(OH)2D3 signaling. BMC Molecular Biology (2012) 13: 18.

[43]    

Morishita D, Katayama R, Sekimizu K, Tsuruo T, Fujita N: pim kinases promote cell cycle progression by phosphorylating and down-regulating p27kip1 at the transcriptional and posttranscriptional levels. Cancer Research (2008) 68 (13): 5076–85.

[44]    

Merkel AL, Meggers E, Ocker M: PIM1 kinase as a target for cancer therapy. Expert Opinion on Investigational Drugs (2012) 21 (4): 425-436.

[45]    

Arunesh GM, Ekambaram S, Krishna MH, Kumar JS, Viswanadhan: Small molecule inhibitors of PIM1 kinase: July 2009 to February 2013 patent update. Expert Opinion on Therapeutic Patents (2014) 24 (1): 5-17.

[46]    

Olla S, Manetti F, Crespan E, Maga G, Angelucci A, Schenone S, Bologna M, Botta M: Indolyl-pyrrolone as a new scaffold for pim1 inhibitors. Bioorganic & Medicinal Chemistry Letters (2009) 19 (5): 1512-1516.

[47]    

Silvia S, Cristina T, Maurizio B: Using Insights into Pim1 Structure to Design New Anticancer Drugs. Current Pharmaceutical Design (2010) 16 (35): 3964-3978 (15).

[48]    

Bullock AN, Russo S, Amos A, Pagano N, Bregman H, Debreczeni JE, Lee WH, von Delft F, Meggers E, Knapp S: Crystal structure of the pim2 kinase in complex with an organoruthenium inhibitor. Plos One (2009) 4 (10): e7112.

[49]    

Le BT, Kumarasiri M, Adams JRJ, Yu M, Milne R, Sykes MJ, Wang S: Targeting Pim kinases for cancer treatment: opportunities and challenges. Future Medicinal Chemistry (2015) 7 (1).

[50]    

Mohammad HB, Khurshid A, Sudeep R, Jalaluddin MA, Mohd A, Mohammad HS, Saif H, Mohammad AK, Ivo P, Inho C: Computer aided drug design: success and limitations. Current Pharmaceutical Design (2016) 22 (5): 572-581 (10).

[51]    

Hopkins AL: Network pharmacology: the next paradigm in drug discovery. Nature Chemical Biology (2008) 4: 682–690.

[52]    

Mingli X, Yu C, Wenjie F, Lijuan C, Yirong M: Computer-Aided Drug Design: Lead Discovery and Optimization. Combinatorial Chemistry & High Throughput Screening (2012) 15 (4): 328-337 (10).

[53]    

Ogawa N, Yuki H, Tanaka A: Insights from pim1 structure for anti-cancer drug design. Expert Opinion on Drug Discovery (2012) 7 (12): 1177-1192.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership